Elastic collision in 2-dimensions

AI Thread Summary
The discussion revolves around solving a physics problem involving an elastic collision between two identical balls. The user attempts to calculate the post-collision speeds and angles using conservation of momentum and kinetic energy principles but encounters issues leading to an impossible value for the speed of the first ball. They express confusion about their mathematical approach, particularly regarding the signs in their equations and the application of trigonometric identities. Suggestions from others in the thread focus on re-evaluating the equations and ensuring proper handling of the variables to resolve the discrepancies. The conversation highlights the complexities of analyzing 2-dimensional elastic collisions and the importance of careful mathematical manipulation.
spark8819
Messages
2
Reaction score
0

Homework Statement


A 2.0 kg ball moving with a speed of 3.0 m/s hits, elastically, an identical stationary ball. If the first ball moves away with angle 30° to the original path, determine:

a. the speed of the first ball after the collision.

b. the speed and direction of the second ball after the collision. 2. Homework Equations
pi=pf
KEi=KEf[/B]

The Attempt at a Solution



I have attempted this problem multiple times using several variations in the math but always seem to run into the same issue of getting an impossible value for v'a as shown below.
[/B]
Momentum conserved in x-axis:

mvax+mvbx=mv'ax+mv'bx

va=v'acos30+v'bcosθ

3=0.866v'a+v'bcosθ (1)

Momentum conserved in y-axis:

mvay+mvby=mv'ay+mv'by

0=v'ay+(-v'by)

v'asin30=v'bsinθ

0.5v'a=v'bsinθ (2)

Kinetic energy conserved:

va^2=v'a^2+v'b^2

9=v'a^2+v'b^2 (3)

Next, I squared equations (1) and (2) and added them together so I could use the trig identity sin^2θ+cos^2θ equals one to get rid of the theta and end up with the following equation:

v'b^2(cos^2θ+sin^2θ) = 0.75v'a^2 - 9 + 0.25v'a^2

v'b^2 = v'a^2 - 9 (4)

Next, I write equation (3) in terms of v'b^2 and substitute it into equation (4) to get the following:

va^2 - v'a^2 = v'a^2 - 9

3^2 - v'a^2 = v'a^2 - 9

18 = 2v'a^2

v'a= 3 m/s

I know this answer can't be right because some of the energy from ball A will be lost after the collision which will cause a reduction in its velocity. Fairly confident in the methodology behind this but I think I am making a mistake in the math somewhere that I am missing.

Any assistance/comments are appreciated!
 
Physics news on Phys.org
spark8819 said:
v'b^2(cos^2θ+sin^2θ) = 0.75v'a^2 - 9 + 0.25v'a^2
Try that step again, maybe taking smaller steps.
 
Square eq (1):

(3)^2=(0.866v'a+v'bcosθ)^2

9=(0.866v'a+v'bcosθ)(0.866v'a-v'bcosθ)

9=0.75v'a^2-0.866v'av'bcosθ+0.866v'av'bcosθ-v'b^2cos^2θ

9=0.75v'a^2-v'b^2cos^2θ

REARRANGE:

v'b^2cos^2θ=0.75v'a^2-9 (1)

Square eq (2):

(0.5v'a)^2=(v'bsinθ)^2

0.25v'a^2=v'b^2sin^2θ

REARRANGE:

v'b^2sin^2θ=0.25v'a^2 (2)

ADD EQ (1) and (2):

v'b^2cos^2θ+v'b^2sin^2θ=0.75v'a^2-9+0.25v'a^2

Then, factor out v'b^2 and combine like terms on the right side:

v'b^2(cos^2θ+sin^2θ)=v'a^2-9

then I am left with:

v'b^2=v'a^2-9I am having a hard time seeing where I am going wrong here... I feel like its positive/negative error but not sure. :confused:
 
spark8819 said:
Square eq (1):

(3)^2=(0.866v'a+v'bcosθ)^2

9=(0.866v'a+v'bcosθ)(0.866v'a-v'bcosθ)
Why does the second fctor on the right have a minus sign ?

The right hand side should be (0.866v'a + v'bcosθ)(0.866v'a + v'bcosθ)

... but that won't result in getting rid of θ in the end.
9=0.75v'a^2-0.866v'av'bcosθ+0.866v'av'bcosθ-v'b^2cos^2θ

9=0.75v'a^2-v'b^2cos^2θ

REARRANGE:

v'b^2cos^2θ=0.75v'a^2-9 (1)

Square eq (2):

(0.5v'a)^2=(v'bsinθ)^2

0.25v'a^2=v'b^2sin^2θ

REARRANGE:

v'b^2sin^2θ=0.25v'a^2 (2)

ADD EQ (1) and (2):

v'b^2cos^2θ+v'b^2sin^2θ=0.75v'a^2-9+0.25v'a^2

Then, factor out v'b^2 and combine like terms on the right side:

v'b^2(cos^2θ+sin^2θ)=v'a^2-9

then I am left with:

v'b^2=v'a^2-9I am having a hard time seeing where I am going wrong here... I feel like its positive/negative error but not sure. :confused:
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top