Electric field at the center of the equilateral triangle

Click For Summary
SUMMARY

The discussion centers on calculating the electric field at the center of an equilateral triangle formed by three point charges: 2µC and two -4µC charges. The calculated net electric field is 4.05 x 10^6 V/m, derived using the formula E = k/r^2 (|Q1| + |Q2|). Participants debate the accuracy of an answer key that states the electric field should be 2.7 x 10^6 V/m, concluding that the key is likely incorrect. The importance of using absolute values for charge magnitudes in electric field calculations is emphasized.

PREREQUISITES
  • Understanding of Coulomb's Law and electric field calculations
  • Familiarity with the concept of electric field direction and superposition
  • Knowledge of basic geometry, specifically properties of equilateral triangles
  • Proficiency in manipulating scientific notation and units (V/m)
NEXT STEPS
  • Review Coulomb's Law and its application in electric field calculations
  • Learn about the principle of superposition in electric fields
  • Study the geometry of equilateral triangles in relation to charge placement
  • Explore common errors in electric field calculations and how to avoid them
USEFUL FOR

Students and educators in physics, electrical engineers, and anyone involved in electrostatics and electric field analysis will benefit from this discussion.

hellowmad
Messages
11
Reaction score
2
Homework Statement
Consider an equilateral triangle of side 20. cm. A charge of +2.0 μC is placed at one vertex and charges of -4.0 μC are placed at the other two vertices. Determine the magnitude and direction of the electric field at the center of the triangle.
Relevant Equations
E = kQ1/r^2
I've found the distance from each point to the center, which is equal to r=20x1.732/3 = 11.55 cm.
I find out that E2 and E3 due to -4µEyC on x-direction canceled each other.
The E2y = E3Y = EY = E2Ycos60 = E2/2 = [(KQ2)/r^2]/2
So the net E-field:
E = E1 +E2y+E3Y
=kQ1/r^2 + [(KQ2)/r^2]/2 + [(KQ2)/r^2]/2
= kQ1/r^2 + (KQ2)/r^2
= (k/r^2) (|Q1|+|Q2|)
= (9 x 10^9/0.1155^2) [(0.000002) + (0.000006)]
= 4.05x10^ N/C
= 4.05x10^ V/m

However, answer key say it should be 2.7x10^6 V/m. Do I do something wrong?
 
Physics news on Phys.org
hellowmad said:
kQ1/r^2 + (KQ2)/r^2
= (k/r^2) (|Q1|+|Q2|)
Where did the modulus signs come from?
 
It is not modulus sign. it just means absolute number only. So, it stands as 2µC and 4µC.
 
hellowmad said:
It is not modulus sign. it just means absolute number only. So, it stands as 2µC and 4µC.
That is what I mean by modulus here, the absolute value. Why are you taking the absolute values of the charges?
 
No matter what charge places on the center of triangle, the E field direction of two -4µC's Y-direction is the same as that of 2µC one. The final E-field is the sum of them, So I take the absolute values of the charges here. Thanks
 
hellowmad said:
= (k/r^2) (|Q1|+|Q2|)
= (9 x 10^9/0.1155^2) [(0.000002) + (0.000006)]
|Q2| is 4 μC , not 6 μC. But I think this is just a typo. The total inside the square brackets is 6 μC.

hellowmad said:
= 4.05x10^ N/C
= 4.05x10^ V/m
This looks correct to me if you intended the power of 10 to be 6.

hellowmad said:
However, answer key say it should be 2.7x10^6 V/m.
I think the key is wrong and your answer is right.
 
  • Like
Likes   Reactions: hellowmad and MatinSAR
Thank TSny. Yes couple typo. Sorry for that. My answer is 4.05x10^6 V/m.

Thank you everyone
 
hellowmad said:
No matter what charge places on the center of triangle, the E field direction of two -4µC's Y-direction is the same as that of 2µC one. The final E-field is the sum of them, So I take the absolute values of the charges here. Thanks
Right, but that's a dodgy way to fix it. Your working should have been
hellowmad said:
E = E1 +E2y+E3Y
=kQ1/r^2 - [(KQ2)/r^2]/2 - [(KQ2)/r^2]/2
= kQ1/r^2 - (KQ2)/r^2
= (k/r^2) (Q1-Q2)
The minus signs in line 2 reflect the fact that those charges are on the opposite side.

Btw, the book answer is exactly 2/3 of yours. That should be a clue as to where they went wrong, but I can't pick it.
 
  • Like
Likes   Reactions: hellowmad, MatinSAR and SammyS
Yes, this is the point I post here to see if I forget something or make a mistake.
 
  • #10
hellowmad said:
Yes, this is the point I post here to see if I forget something or make a mistake.
I repeated the calculation and I agree with your answer. It does not look like you have made a mistake or overlooked something.
 
  • Like
Likes   Reactions: hellowmad and MatinSAR
  • #11
Thank you so much kuruman
 
  • Like
Likes   Reactions: kuruman

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
18
Views
5K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K