Electric field direction on a grounded conducting sphere

Click For Summary
SUMMARY

The discussion focuses on determining the direction of the electric field on the surface of a grounded conducting sphere near a point charge +q. Using the method of images, the induced charge on the sphere is calculated as q' = -R/d * q. The potential V and electric field E are derived, revealing that the electric field at the surface of the sphere (r=R) points radially outward, confirming that it does not make a 90° angle with the surface. The final expression for the electric field at the surface is E(r=R) = -q/(4πε₀) * ((d² - R²)/(R(R² + d² - 2dRcos(θ)))³/²)hat{r}.

PREREQUISITES
  • Understanding of electrostatics and electric fields
  • Familiarity with the method of images in electrostatics
  • Knowledge of spherical coordinates and their application in physics
  • Proficiency in calculus, particularly partial derivatives
NEXT STEPS
  • Study the method of images in electrostatics for various charge configurations
  • Learn about electric field calculations in spherical coordinates
  • Explore the implications of grounding in electrostatic problems
  • Investigate the behavior of electric fields near conductors in different geometries
USEFUL FOR

Physics students, electrical engineers, and researchers in electrostatics looking to deepen their understanding of electric fields around conductors and the method of images.

zapman345
Messages
11
Reaction score
2
Homework Statement
Is the angle that the electric field makes on the surface of a grounded conducting sphere near a (positive) point charge 90°? I.e. is the electric field pointed radially outward from the sphere.
Relevant Equations
##E=-\nabla V##
I am required to find the direction of the electric field on the surface of a grounded conducting sphere in the proximity of a point charge ##+q##. The distance between the center of the sphere and the point charge is ##d## and using the method of images we find that the charge of the sphere is ##q' = -\frac{R}{d}q## then we can calculate the potential which I found here:
$$V\left(\vec{r}\right) =\frac{q}{4\pi\epsilon_{0}}\left[\frac{1}{\sqrt{d^{2}+r^{2}-2dr\cos\left(\theta\right)}}-\frac{\frac{R}{d}}{\sqrt{\left(\frac{R^{2}}{d}\right)^{2}+r^{2}-2\left(\frac{R^{2}}{d}\right)r\cos\left(\theta\right)}}\right]$$
Now we also know that the electric field is:
\begin{align*}

E & =-\nabla V\\

& =-\left(\frac{\partial V}{\partial r}\hat{r}+\frac{1}{r}\frac{\partial V}{\partial\theta}\hat{\theta}+\frac{1}{r\sin\left(\theta\right)}\frac{\partial V}{\partial\phi}\hat{\phi}\right)\\

& =-\left(\frac{\partial V}{\partial r}\hat{r}+\frac{1}{r}\frac{\partial V}{\partial\theta}\hat{\theta}\right)\\

\end{align*}
Can I from this positively say that the electric field outside the sphere is not radially pointed outward only, and thus does not make a 90° angle with the surface of the sphere?
 
Physics news on Phys.org
Don't you need to evaluate ##\frac{\partial V}{\partial\theta}## at r=R?
 
I did but that wouldn't make the ##\theta## component vanish cause I find that $$E_{\theta} = -\frac{1}{r}\cdot\left(\frac{rR^{3}\sin(\theta)}{d^{2}\left(\frac{R^{4}}{d^{2}}-\frac{2rR^{2}\cos(\theta)}{d}+r^{2}\right)^{3/2}}-\frac{dr\sin(\theta)}{\left(d^{2}-2dr\cos(\theta)+r^{2}\right)^{3/2}}\right)\hat{\theta}$$ Which even at ##r=R## doesn't vanish, it does vanish for ##\theta=0## but that is a trivial solution as that is the line directly between the real and fictive charge used in the method of images. For any ##\theta\neq0## this won't vanish but intuitively I think it should vanish because we're talking about a spherical object.
 
Consider the case R →∞ , you should recover the flat plane case for the potential. I think you need to worry about the angle for the image charge...you seem have a sign wrong.
 
You were right. The potential I had calculated should be $$
\begin{align*}

V\left(\vec{r}\right) & =\frac{q}{4\pi\epsilon_{0}}\left[\frac{1}{\sqrt{r^{2}+d^{2}-2dr\cos\left(\theta\right)}}-\frac{1}{\sqrt{R^{2}+\left(\frac{rd}{R}\right)^{2}-2dr\cos\left(\theta\right)}}\right]\\

\end{align*}$$
Then for the electric field you will find $$\begin{align*}
E & =-\frac{q}{4\pi\epsilon_{0}}\left\{ \left(\frac{2\left(\frac{d}{R}\right)^{2}r-2d\cos(\theta)}{2\left(R^{2}+\left(\frac{dr}{R}\right)^{2}-2ar\cos(\theta)\right)^{3/2}}+\frac{2r-2d\cos(\theta)}{2\left(r^{2}+d^{2}-2dr\cos(\theta)\right)^{3/2}}\right)\hat{r}+\frac{1}{r}\cdot\left(\frac{dr\sin\left(\theta\right)}{\left(R^{2}+\left(\frac{rd}{R}\right)^{2}-2dr\cos\left(\theta\right)\right)^{3/2}}-\frac{dr\sin\left(\theta\right)}{\left(r^{2}+d^{2}-2dr\cos\left(\theta\right)\right)^{3/2}}\right)\hat{\theta}\right\}

\end{align*}$$

Which reduces to
\begin{align*}

E\left(r=R\right) & =-\frac{q}{4\pi\epsilon_{0}}\left(\frac{d^{2}-R^{2}}{R\left(R^{2}+d^{2}-2dR\cos(\theta)\right)^{3/2}}\hat{r}+0\hat{\theta}\right)\\

& =-\frac{q}{4\pi\epsilon_{0}}\left(\frac{d^{2}-R^{2}}{R\left(R^{2}+d^{2}-2dR\cos(\theta)\right)^{3/2}}\right)\hat{r}

\end{align*}

Pointing only in the radial direction on the surface as expected. Thank you for all your help.
 

Similar threads

Replies
12
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
11
Views
1K
Replies
23
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K