Electric field due to three point charges

AI Thread Summary
The discussion centers on calculating the electric field intensity due to three point charges, with specific values provided for each charge. The user is struggling to compute the resultant intensity along the X and Y axes using the parallelogram law. Respondents emphasize the importance of expressing the electric field values as vectors in rectangular coordinates to facilitate component-wise addition. They suggest decomposing the vectors into their X and Y components to find the net electric field. The conversation highlights the need for a clear understanding of vector addition in the context of electric fields.
emmanual
Messages
2
Reaction score
0
Homework Statement
Three point charges q1(+3C), q2(+4C), q3(+3C) are located in a square-shaped form with a distance of 2cm with a 90° cone in every edge(picture in the attached file 39png). Calculate the resultant intensity of point P.
Relevant Equations
Coulomb's law :
F=q1q2/4πεr2
Parallelogram law:
R=√(P²+ Q²+ 2PQcosα)
I've calculated the intensity for every point charge which are
EA = 6.741 x 10¹³ NC¯¹
EB = 4.494 x 10¹¹ NC¯¹
EC = 6.741 x 10¹³ NC¯¹
and I am pretty sure about this far but I am struggling to calculate the X-axis intensity and Y-axis intensity to find the entire approximate intensity with the parallelogram law.
PLEASE HELPPP!
2022-02-14 (39).png
 

Attachments

  • 2022-02-14 (38).png
    2022-02-14 (38).png
    9.5 KB · Views: 148
Physics news on Phys.org
Welcome to PF. :smile:

It looks like you have a good start, but those electric field values should be vectors so that you can do the vector sum at P. Can you express all 3 of them as vectors in rectangular coordinates at P so that you can add them up component-wise?
 
berkeman said:
Welcome to PF. :smile:

It looks like you have a good start, but those electric field values should be vectors so that you can do the vector sum at P. Can you express all 3 of them as vectors in rectangular coordinates at P so that you can add them up component-wise?
I've already expressed all 3 in vectors in the first file w the arrows on p and identified them with the EA, EB and EC and which I used to express the resultant intensity too and Idk how I'm supposed to add it up that's where I'm stuck😭 like I know it's supposed to be 2 values, not 3 and IDK how to reduce it into 2 values which will be valid mathematically
 
Are you saying YDK how to decompose a vector into its components? The magnitude of the vector is represented as the hypotenuse of a right triangle with the x and y components as the two right sides. Have you not seen this before?
 
  • Like
Likes SammyS and berkeman
to keep things simple, find separate electrics field of all the charges and in the end add them to get a net electric field due to all the charges, if you want to do other way around its up to you.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top