Electric Potential: 0 Between 2 Point Charges of +q?

AI Thread Summary
The discussion centers on the electric potential created by two point charges, each with charge +q. It clarifies that the electric potential does not equal zero at any point between the charges, including the midpoint. Instead, while the electric field is zero at the midpoint due to the equal and opposite forces from the charges, the electric potential remains positive. The potential is defined as the energy required to move a charge from infinity to that point, and since both charges contribute positively to the potential, it cannot vanish between them. The conclusion emphasizes that the potential can only be zero at infinity, not at any finite point between the charges.
daveed
Messages
138
Reaction score
0
if you had two point charges of charge +q each, where would the electric potential vanishes, other than at infinite?

the thing i am reading says "nowhere", though i am wondering, why can there not be 0 electric potential exactly halfway between the charges?
 
Physics news on Phys.org
Don't believe everything that you read,
Regards,
Reilly Atkinson
 
Nowhere. The potential is not the field, so midway between the charges the potential is not zero but its derivative and therefore the electric field, is zero. The potential is a measure of how much energy you need, to get from infinity to that point.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top