Electrical Conductivity of Fluids

AI Thread Summary
Electrical conductivity in fluids is primarily determined by the presence of mobile charge carriers, such as ions. While negatively charged ions (anions) like Cl- can enhance conductivity, positively charged ions (cations) like Na+ also contribute by moving towards the negative electrode, creating a current. The movement of ions, rather than free electrons, is crucial for conductivity in solutions. In biological systems, the electrical activity of neurons involves the movement of positive charges across membranes, differing from traditional conductive processes in materials. Overall, both positive and negative ions play significant roles in electrical conductivity.
Shelnutt2
Messages
57
Reaction score
0
So it has always been my understanding that in order for something to electrically conductive it has to have more electrons than it needs. If the electrons can be easily shaken from their atoms, then it's conductive. The easier it is for the electron to move to the next atom the more conductive it is correct?

So then when trying to make a solution conductive it would be best to add negative ions correct? These negatively charged ions have a more "spare" electrons. Positive ions would make very bad conductors as they have more protons than electrons there for they don't have any "spare" or electrons that are in a higher orbit and easier to break loose. Am I wrong in my thinking?

So then for example, when adding salt to water, NaCl, as it becomes Na+ and Cl-, it's actually the Cl- that makes it more conductive? If you could remove the sodium ions, Na+, would it become even more conductive?

Recently in a biology text I read it mentioned how Na+, K+, Ca+ and others help increase the electrical conductivity in the body and are used in transmitting neurons. I'm not sure if there is just a different process going on in the body, involving active transportation and potentials and other things, or do positively charged ions really increase conductivity too?


Thanks
 
Physics news on Phys.org
In NaCl, both Na+ and Cl- contribute to the electrical conductivity. The Na+ moves to the negative electrode and the Cl- moves to the positive electrode. Movement of negative charge in one direction is "effectively" the same current as positive charge moving in the opposite direction. The most important thing is that the charges are not stuck to specific locations, but are free to move.
 
Shelnutt2 said:
So it has always been my understanding that in order for something to electrically conductive it has to have more electrons than it needs. If the electrons can be easily shaken from their atoms, then it's conductive. The easier it is for the electron to move to the next atom the more conductive it is correct?

So then when trying to make a solution conductive it would be best to add negative ions correct? These negatively charged ions have a more "spare" electrons. Positive ions would make very bad conductors as they have more protons than electrons there for they don't have any "spare" or electrons that are in a higher orbit and easier to break loose. Am I wrong in my thinking?

Yes. A much better criterion for conductivity would be the presence of mobile charge carriers.
 
atyy said:
The most important thing is that the charges are not stuck to specific locations, but are free to move.

In general you are right, but this statement needs IMHO clarification.

Not the charges are free to move, but ions. Charge moves together with ion. "Charges are not stuck" can be (wrongly) understood as free electrons moving in the liquid. That's not the case.

Well, in some solutions that can be the case, but in the presence of water solvated electrons are about as common as kangaroos in Alaska.
 
Shelnutt2 said:
Recently in a biology text I read it mentioned how Na+, K+, Ca+ and others help increase the electrical conductivity in the body and are used in transmitting neurons. I'm not sure if there is just a different process going on in the body, involving active transportation and potentials and other things, or do positively charged ions really increase conductivity too?
The electrical activity of neurons is completely different than what goes on in man made machines and electronics. Very briefly, when a neuron "fires" positive charges move from outside the neuron to inside the neuron. There is no flow of electrons along a conductor.

This site has some animation that illustrates this:

http://www.bris.ac.uk/synaptic/public/basics_ch1_2.html
 
Last edited by a moderator:
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top