Petar Mali
- 283
- 0
\Delta\vec{A}-\frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial t^2}=-\mu_0\vec{j}
\Delta\varphi-\frac{1}{c^2}\frac{\partial^2 \varphi}{\partial t^2}=-\frac{1}{\epsilon_0}\rho
c=\frac{1}{\sqrt{\epsilon_0\mu_{0}}}
\epsilon_0=8,85\cdot 10^{-12}\frac{F}{m}
\mu_0=4\pi 10^{-7}T
div\vec{A}+\frac{1}{c^2}\frac{\partial \varphi}{\partial t}=0
\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial _y}+\frac{\partial A_z}{\partial z}+\frac{\partial (\frac{1}{c}\varphi)}{\partial (ct)}=0
A^{\mu}=(\vec{A},\frac{1}{c}\varphi)
A_{\mu}=g_{\mu\nu}A^{\nu}
A_{\mu}=(-\vec{A},\frac{1}{c}\varphi)
divA^{\mu}=0
Can I say from
A^{\mu}=(\vec{A},\frac{1}{c}\varphi)
and
A_{\mu}=(-\vec{A},\frac{1}{c}\varphi)
something more about gauge transformations of electromagnetic potentials
\varphi_0=\varphi-\frac{\partial f}{\partial t}
\vec{A}_0=\vec{A}+gradf
I think about - sign in first term -\frac{\partial f}{\partial t} and + sign in second term +gradf
Or
\varphi_0=\varphi+\frac{\partial f}{\partial t}
\vec{A}_0=\vec{A}-gradf
\Delta A^{\mu}-\frac{1}{c^2}\frac{\partial^2 A^{\mu}}{\partial t^2}=-\mu_0j^{\mu}
j^{\mu}=(j_x,j_y,j_z,c\rho)
\Delta\varphi-\frac{1}{c^2}\frac{\partial^2 \varphi}{\partial t^2}=-\frac{1}{\epsilon_0}\rho
c=\frac{1}{\sqrt{\epsilon_0\mu_{0}}}
\epsilon_0=8,85\cdot 10^{-12}\frac{F}{m}
\mu_0=4\pi 10^{-7}T
div\vec{A}+\frac{1}{c^2}\frac{\partial \varphi}{\partial t}=0
\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial _y}+\frac{\partial A_z}{\partial z}+\frac{\partial (\frac{1}{c}\varphi)}{\partial (ct)}=0
A^{\mu}=(\vec{A},\frac{1}{c}\varphi)
A_{\mu}=g_{\mu\nu}A^{\nu}
A_{\mu}=(-\vec{A},\frac{1}{c}\varphi)
divA^{\mu}=0
Can I say from
A^{\mu}=(\vec{A},\frac{1}{c}\varphi)
and
A_{\mu}=(-\vec{A},\frac{1}{c}\varphi)
something more about gauge transformations of electromagnetic potentials
\varphi_0=\varphi-\frac{\partial f}{\partial t}
\vec{A}_0=\vec{A}+gradf
I think about - sign in first term -\frac{\partial f}{\partial t} and + sign in second term +gradf
Or
\varphi_0=\varphi+\frac{\partial f}{\partial t}
\vec{A}_0=\vec{A}-gradf
\Delta A^{\mu}-\frac{1}{c^2}\frac{\partial^2 A^{\mu}}{\partial t^2}=-\mu_0j^{\mu}
j^{\mu}=(j_x,j_y,j_z,c\rho)
Last edited: