How do microwaves cause molecules to move and heat up food?

AI Thread Summary
Microwaves heat food by passing non-ionizing radiation, typically at a frequency of 2.45 GHz, through it. This radiation excites polar molecules, particularly water, causing them to absorb energy and move. The motion of these molecules generates friction on a molecular level, which translates into heat. As the molecules rotate to align with the alternating electric field of the microwaves, they collide with other molecules, dispersing energy. This process results in the heating of both solids and liquids, effectively cooking the food.
AlexHornby
Messages
4
Reaction score
0
how can microwaves heat food?
 
Physics news on Phys.org
To my knowledge, microwaves excite polar molecules (namely water). They basically absorb the microwaves and this energy translates into motion. This motion then translates into friction on a molecular level. I would recommend wikipedia for a more thorough answer.

EDIT:
A microwave oven works by passing non-ionizing microwave radiation, usually at a frequency of 2.45 gigahertz (GHz)—a wavelength of 122 millimetres (4.80 in)—through the food. Microwave radiation is between common radio and infrared frequencies. Water, fat, and other substances in the food absorb energy from the microwaves in a process called dielectric heating. Many molecules (such as those of water) are electric dipoles, meaning that they have a partial positive charge at one end and a partial negative charge at the other, and therefore rotate as they try to align themselves with the alternating electric field of the microwaves. Rotating molecules hit other molecules and put them into motion, thus dispersing energy. This energy, when dispersed as molecular vibration in solids and liquids (i.e., as both potential energy and kinetic energy of atoms), is heat.
 
Last edited:
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top