Ocata
- 198
- 5
Hello, I am attempting to eliminate the parameter from r'(θ) = r'(θ)=<-10sinθ,10cosθ> , but when I do, I get back to the same equation as I would for eliminating the parameter for r(θ)=<10cosθ,10sinθ>
(1) x^2 + y^2 = 10
y = \sqrt{10-x^2}
(2) y' = \frac{-x}{\sqrt{10-x^2}}
then,
since x^2 + y^2 = 10, if we let
x=\sqrt{10}cosθ
y=\sqrt{10}sinθ, then
(3) r(θ)=<10cosθ,10sinθ>
(4)r'(θ)=<-10sinθ,10cosθ>
then how come if I let,
x=-\sqrt{10}sinθ
y=\sqrt{10}cosθ,
I get
\frac{-x}{\sqrt10}=sinθ
\frac{y}{\sqrt10}=cosθ
(\frac{-x}{\sqrt{10}})^2 + (\frac{y}{\sqrt{10}})^2= 1
x^2 + y^2 = 10
But, my question is:
Why does eliminating the parameter in
r'(θ)=<-10sinθ,10cosθ> ⇒ x^2 + y^2 = 10
instead of what seems more intuitive:
r'(θ)=<-10sinθ,10cosθ> ⇒y' = \frac{-x}{\sqrt{10-x^2}}It just feel like it would make more sense for a y(x) ⇒ r(θ) and y'(x) ⇒ r'(θ)
So I wonder why y(x) ⇒ r(θ) and y'(x) ⇒ r(θ)
In words, what I'm asking, is when I introduce the theta parameter for the semicircle (1), I get the paremetric/vector function (3). Then if I take the derivative of the semicircle I get (2), and when I introduce the theta parameter, I get (4). But if I eliminate the parameter in (3), I go back to (1), but when I eliminate the parameter of (4), I don't go back to (2), but instead go back to (1) as well.
Why does this occur?
(1) x^2 + y^2 = 10
y = \sqrt{10-x^2}
(2) y' = \frac{-x}{\sqrt{10-x^2}}
then,
since x^2 + y^2 = 10, if we let
x=\sqrt{10}cosθ
y=\sqrt{10}sinθ, then
(3) r(θ)=<10cosθ,10sinθ>
(4)r'(θ)=<-10sinθ,10cosθ>
then how come if I let,
x=-\sqrt{10}sinθ
y=\sqrt{10}cosθ,
I get
\frac{-x}{\sqrt10}=sinθ
\frac{y}{\sqrt10}=cosθ
(\frac{-x}{\sqrt{10}})^2 + (\frac{y}{\sqrt{10}})^2= 1
x^2 + y^2 = 10
But, my question is:
Why does eliminating the parameter in
r'(θ)=<-10sinθ,10cosθ> ⇒ x^2 + y^2 = 10
instead of what seems more intuitive:
r'(θ)=<-10sinθ,10cosθ> ⇒y' = \frac{-x}{\sqrt{10-x^2}}It just feel like it would make more sense for a y(x) ⇒ r(θ) and y'(x) ⇒ r'(θ)
So I wonder why y(x) ⇒ r(θ) and y'(x) ⇒ r(θ)
In words, what I'm asking, is when I introduce the theta parameter for the semicircle (1), I get the paremetric/vector function (3). Then if I take the derivative of the semicircle I get (2), and when I introduce the theta parameter, I get (4). But if I eliminate the parameter in (3), I go back to (1), but when I eliminate the parameter of (4), I don't go back to (2), but instead go back to (1) as well.
Why does this occur?