I Energy density and pressure of perfect fluid

RiverL
is there any way to derive p=rho/3 from 4 vector or stress-energy tensor?
 
Physics news on Phys.org
This is true for (free) massless particles only and derives from the invariance of the action under scaling transformations. Take, as an example, a massless scalar field (in for simplicity special relativity). The Lagrangian is
$$\mathcal{L}=\frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi).$$
The action is obviously invariant under the scaling transformation
$$x \rightarrow \lambda x, \quad \phi \rightarrow \frac{1}{\lambda} \phi,$$
because then
$$\mathcal{L} \rightarrow \lambda^{-4} \mathcal{L}, \quad \mathrm{d}^4 x=\lambda^4 \mathrm{d}^4 x.$$
Using Noether's theorem you can show that the corresponding Noether current leads to
$${\Theta^{\mu}}_{\mu}=0,$$
i.e., the vanishing of the (covariant) trace of the canonical energy-momentum tensor.

Another way to directly verify this is to calculate pressure and energy density of an ideal gas of massless particles. The energy-momentum tensor is given by
$$\Theta^{\mu \nu}(x) = g\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 \vec{p}}{(2 \pi \hbar)^3} \frac{p^{\mu} p^{\mu}}{p^0} f_{\text{B/F}}(p^0), \quad p^0=\sqrt{m^2+\vec{p}^2}.$$
Here, ##f_{\text{B/F}}## is the Bose or Fermi distribution, and ##g## some degeneracy factor counting intrinsic discrete quantum numbers like spin, isospin, flavor, color and the like.

Since in this integral the particles are always on their mass shell, for ##m=0## you get indeed ##{\Theta^{\mu}}_{\nu}=0## because of ##p_{\mu} p^{\mu}=m^2=0##.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
12
Views
2K
Replies
9
Views
3K
Replies
33
Views
4K
Replies
13
Views
3K
Replies
2
Views
1K
Replies
6
Views
4K
Back
Top