stefan10
- 34
- 0
Homework Statement
\mbox{Let} \ p(< \nu_{0}) \mbox{be the total energy density of blackbody radiation in all frequencies less than} \ \nu_{0}, \mbox{where} \ h \nu_{0} << kT. \mbox{Derive an expression for} \ p (< \nu_{0})
Homework Equations
p(v) dv = \dfrac{8 \pi h} {c^3} \dfrac {\nu^3}{e^\frac{h\nu}{kT} -1} dv
The Attempt at a Solution
We want to find the total energy density, so that means we'll have to integrate the Planck's Law. The limits of integration will be from 0 to v-knot.
h \nu < h \nu_{0} << KT \Rightarrow h \nu << KT
Which if we simplify for this limit gives:
p(v) dv = \dfrac{8 \pi h} {c^3} \dfrac {\nu^3}{e^\frac{h\nu}{kT} -1} dv
p(v) dv = \dfrac{8 \pi h} {c^3} \dfrac {\nu^3}{\dfrac{h\nu}{kT} +1 -1} dv
p(v) dv = \dfrac{8 \pi h} {c^3} \dfrac {\nu^3}{\frac{h\nu}{kT} } dv
p(v) dv = \dfrac{8 \pi KT}{c^3} \nu^2 dv \ \mbox{Rayleigh-Jeans Formula}
p(<v_{0}) = \dfrac{8 \pi KT}{c^3}\int _ {0} ^{\nu_{0}} \nu^2 dv
p(<v_{0}) = \dfrac{8 \pi KT}{3 c^3}\nu_{0}^3
Is there anything wrong? Thank you very much!
Last edited: