Energy-momentum tensor for a relativistic system of particles

AI Thread Summary
The discussion focuses on deriving the energy-momentum tensor for a system of non-interacting relativistic particles. The correct Lagrangian for such a system is the sum of the individual Lagrangians, expressed as L = ∑i Li, where Li = -m0i/γi. It is clarified that the total energy-momentum tensor is also the sum of the individual tensors, Tμν = ∑i Tiμν. The initial confusion regarding the covariant formalism in the Lagrangian is addressed by emphasizing the need to consider each particle's contributions separately. Understanding these relationships is crucial for correctly applying the principles of relativistic systems.
Frostman
Messages
114
Reaction score
17
Homework Statement
Construct the energy-momentum tensor for a relativistic system of non-interacting particles and show explicitly that it is conserved.
Relevant Equations
##T^{\alpha\beta}=\frac{\partial L}{\partial \varphi/_\alpha}\varphi/^\beta-g^{\alpha\beta}L##
##T^{\alpha\beta}/_\alpha=0##
I think it is quite simple as an exercise, following the two relevant equations, but at the beginning I find myself stuck in going to identify the lagrangian for a relativistic system of non-interacting particles.
For a free relativistic particle I know that lagrangian is:
$$L=-\frac{m_0}{\gamma}$$
But for a system of non-interacting particles I can use this one?
$$L=\sum_i-\frac{m_{0i}}{\gamma}$$
But when I step to energy-momentum tensor I don't have any covariant formalism in this lagrangian. Somebody can help me?
 
Physics news on Phys.org
A:No, the Lagrangian for a system of non-interacting particles is not just the sum of the Lagrangians for each individual particle. The Lagrangian for a system of non-interacting particles is simply the sum of the individual particle's Lagrangians.$$L = \sum_i L_i$$where$$L_i = -\frac{m_{0i}}{\gamma_i}$$The total energy-momentum tensor for such a system is then given by$$T^{\mu \nu} = \sum_i T_i^{\mu \nu},$$where $T_i^{\mu \nu}$ is the energy-momentum tensor of particle $i$.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Thread 'Stacked blocks & pulley system'
I've posted my attempt at a solution but I haven't gone through the whole process of putting together equations 1 -4 yet as I wanted to clarify if I'm on the right path My doubt lies in the formulation of equation 4 - the force equation for the stacked block. Since we don't know the acceleration of the masses and we don't know if mass M is heavy enough to cause m2 to slide, do we leave F_{12x} undetermined and not equate this to \mu_{s} F_{N} ? Are all the equations considering all...
Back
Top