Energy-momentum tensor for a relativistic system of particles

Frostman
Messages
114
Reaction score
17
Homework Statement
Construct the energy-momentum tensor for a relativistic system of non-interacting particles and show explicitly that it is conserved.
Relevant Equations
##T^{\alpha\beta}=\frac{\partial L}{\partial \varphi/_\alpha}\varphi/^\beta-g^{\alpha\beta}L##
##T^{\alpha\beta}/_\alpha=0##
I think it is quite simple as an exercise, following the two relevant equations, but at the beginning I find myself stuck in going to identify the lagrangian for a relativistic system of non-interacting particles.
For a free relativistic particle I know that lagrangian is:
$$L=-\frac{m_0}{\gamma}$$
But for a system of non-interacting particles I can use this one?
$$L=\sum_i-\frac{m_{0i}}{\gamma}$$
But when I step to energy-momentum tensor I don't have any covariant formalism in this lagrangian. Somebody can help me?
 
Physics news on Phys.org
A:No, the Lagrangian for a system of non-interacting particles is not just the sum of the Lagrangians for each individual particle. The Lagrangian for a system of non-interacting particles is simply the sum of the individual particle's Lagrangians.$$L = \sum_i L_i$$where$$L_i = -\frac{m_{0i}}{\gamma_i}$$The total energy-momentum tensor for such a system is then given by$$T^{\mu \nu} = \sum_i T_i^{\mu \nu},$$where $T_i^{\mu \nu}$ is the energy-momentum tensor of particle $i$.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top