Energy-momentum tensor for a relativistic system of particles

Frostman
Messages
114
Reaction score
17
Homework Statement
Construct the energy-momentum tensor for a relativistic system of non-interacting particles and show explicitly that it is conserved.
Relevant Equations
##T^{\alpha\beta}=\frac{\partial L}{\partial \varphi/_\alpha}\varphi/^\beta-g^{\alpha\beta}L##
##T^{\alpha\beta}/_\alpha=0##
I think it is quite simple as an exercise, following the two relevant equations, but at the beginning I find myself stuck in going to identify the lagrangian for a relativistic system of non-interacting particles.
For a free relativistic particle I know that lagrangian is:
$$L=-\frac{m_0}{\gamma}$$
But for a system of non-interacting particles I can use this one?
$$L=\sum_i-\frac{m_{0i}}{\gamma}$$
But when I step to energy-momentum tensor I don't have any covariant formalism in this lagrangian. Somebody can help me?
 
Physics news on Phys.org
A:No, the Lagrangian for a system of non-interacting particles is not just the sum of the Lagrangians for each individual particle. The Lagrangian for a system of non-interacting particles is simply the sum of the individual particle's Lagrangians.$$L = \sum_i L_i$$where$$L_i = -\frac{m_{0i}}{\gamma_i}$$The total energy-momentum tensor for such a system is then given by$$T^{\mu \nu} = \sum_i T_i^{\mu \nu},$$where $T_i^{\mu \nu}$ is the energy-momentum tensor of particle $i$.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top