Energy of Fan Blade: Calculating Speed and Strength

  • Thread starter Thread starter Colin De Bruy
  • Start date Start date
  • Tags Tags
    Energy Fan
AI Thread Summary
The fan, designed by Universal Hovercraft for a children's hovercraft, is powered by a 5hp petrol motor with a maximum RPM of 3000. At this RPM, the tip of the fan can reach speeds of 339 km/h (210 mph), while the inner root achieves 169 km/h (105 mph). The discussion centers on calculating the energy of a 200-gram pine blade if it were to detach at these high speeds. The inquiry references the concept of rotational energy for further understanding. Energy calculations are crucial for assessing safety and performance in hovercraft design.
Colin De Bruy
Messages
3
Reaction score
0
Thanks to all who posted. The fan was built by Universal Hovercraft it's purpose built for a small hovercraft designed for kids to ride on. The fan is driven by a 5hp petrol motor which has a top rpm of 3000 rpm. I doubt the engine will get to this rpm with the fan attached but at 3000rpm the tip of the fan is doing 339km per hour or 210 mph and the inner root of the blade is doing 169km or 105mph. So does anyone know how much energy a 200gram pine blade has if it were to break off at this speed? Many thanks Colin
 
Engineering news on Phys.org
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top