1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Energy raising/lowering operators, algebra

  1. Jan 2, 2008 #1
    [tex]\hat{x} = \left(\frac{\hbar}{2wm}\right)^{1/2}(\hat{a} + \hat{a}^{+})[/tex]

    [tex]\hat{p} = -i\left(\frac{\hbar wm}{2}\right)^{1/2}(\hat{a} - \hat{a}^{+})[/tex]

    I'm trying to demonstrate that

    [tex]\hat{H} = (\hat{a}^{+}\hat{a} + \frac{1}{2})\hbar w[/tex]

    where [tex]\hat{H} = \frac{1}{2m} \hat{p}^{2} + \frac{mw^{2}}{2} \hat{x}^{2}[/tex]

    Given the commutation relation:

    [tex][\hat{a},\hat{a}^{+}]=1[/tex]

    However I seem to have too many twos! Here's my attempt:

    [tex]\hat{H} = \left[\frac{1}{2m} \frac{\hbar wm}{2} (-\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} - \hat{a}^{+2})\right] + \left[\frac{mw^{2}}{2} \frac{\hbar}{2wm} (\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} + \hat{a}^{+2})\right] [/tex]

    [tex]\hat{H} = \frac{\hbar w}{4} (1 + 2\hat{a}^{+}\hat{a})[/tex]

    Can anyone point out where I've gone wrong? Many thanks!
     
  2. jcsd
  3. Jan 2, 2008 #2

    malawi_glenn

    User Avatar
    Science Advisor
    Homework Helper

    [tex]\hat{H} = \left[\frac{1}{2m} \frac{\hbar wm}{2} (-\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} - \hat{a}^{+2})\right] + \left[\frac{mw^{2}}{2} \frac{\hbar}{2wm} (\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} + \hat{a}^{+2})\right] [/tex]

    is not [tex]\hat{H} = \frac{\hbar w}{4} (1 + 2\hat{a}^{+}\hat{a})[/tex]

    but:
    [tex] \frac{\hbar \omega}{2}(aa^+ + a^+a) [/tex]

    you know that [tex] aa^+ - a^+a = 1 [/tex], how can you manipulate [tex]aa^+ + a^+a[/tex] to become what you are looking for? ([tex]\hat{H} = (\hat{a}^{+}\hat{a} + \frac{1}{2})\hbar w[/tex]
    )

    HINT: Try adding and substract the same entity, 3 = 3 +1 -1
     
    Last edited: Jan 2, 2008
  4. Jan 2, 2008 #3
    Ha, my own stupid fault. I'd only taken one lot of [tex]aa^{+} + a^{+}a[/tex] from the factorising! Thanks malawi! Been a long day hehe
     
  5. Jan 2, 2008 #4

    malawi_glenn

    User Avatar
    Science Advisor
    Homework Helper

    I've been there myself 1000times ;) Good luck!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Energy raising/lowering operators, algebra
Loading...