I Energy reduction/deflection of beta particles due to isotope geometry

Click For Summary
The discussion focuses on the impact of isotope geometry on the energy reduction and deflection of beta particles during decay. It highlights that a solid geometry, such as a disc, will result in more electron collisions compared to a hollow spherical geometry. The degree of energy reduction or deflection is influenced by factors such as mass, decay energy, and radiation absorption in the material. Geant4 is recommended as a suitable simulation software for modeling these interactions. Overall, understanding these dynamics is crucial for accurately predicting beta particle behavior in different geometries.
Aakash Sunkari
Messages
13
Reaction score
1
TL;DR
What is the general "degree" to which energy reduction/deflection occurs in a solid geometry vs a hollow geometry? Are there any modelling tools/software that can calculate this?
Hello all. I'm an undergraduate student looking to conduct an experiment with an isotope that undergoes beta decay.

I am curious as to the degree to which the isotope geometry will reduce the energy of/deflect beta particles emitted from the isotope. By geometry, I mean the "shape" of the isotope. For example, a solid disc of an isotope is definitely going to have more electron collisions/deflections than a thin, hollow, spherical geometry. However, I would assume that this would be to a lesser degree than particles emitted through alpha decay or fission.

Let us assume an isotope which decays 100 times in an hour with an average β energy of 2 MeV. Roughly, what percent energy reduction/deflection would we see in a solid geometry vs a hollow geometry?

I know this question is very non-specific, but I guess a general "degree" to which energy reduction/deflection occurs in a solid geometry vs a hollow geometry would be helpful. Additionally, if there are any modelling tools/software I could use to calculate this that you all are aware of, please do share.

Thank you in advance!
 
Physics news on Phys.org
It depends on the mass, the decay energy, the absorption of the radiation in the material, the place where you measure the decays, and more. This would typically be put into a simulation software. Geant 4 is very common.
 
  • Like
Likes Aakash Sunkari
Thank you! I figured Geant4 would be the best tool to use, but wanted an outside opinion.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...