Equation for Brownian Motion Trajectory

AI Thread Summary
To simulate the trajectory of a Brownian particle, the Langevin equation serves as a fundamental stochastic differential equation. This equation incorporates parameters such as mass, temperature, and friction coefficient, along with Gaussian white noise. The mean-square displacement derived from solving this equation provides an analytical method for determining the particle's position over time. By calculating the Green's function and integrating, one can derive the necessary averages for position and momentum. Understanding these concepts allows for accurate simulation of Brownian motion trajectories.
H Quizzagan
Messages
5
Reaction score
1
I am trying to understand how one can simulate the trajectory of a Brownian particle as a function of time. I am only able to do it with the assumption that I can simply generate random values of x and then take the cumulative sums of these values to get the trajectory of the Brownian particle.

But, are there different sets of equations that guides or regarding the function x(t) that I can easily use to simulate the trajectory of a Brownian particle? Thank you so much!
 
  • Like
Likes Delta2
Physics news on Phys.org
The equation of motion for a Brownian particle is called Langevin equation, which is a stochastic differential equation. In the most simple one-dimensional form it reads
$$\dot{p}+\gamma p + \sqrt{2B} \xi(t)=0,$$
where ##B=m \gamma T## (where ##m## is the mass of the Brownian particle, ##T## the temperature of the fluid the particle is moving in), ##\gamma## is the friction coeffcient, and ##\xi## is normalized Gaussian white noise,
$$\langle \xi(t) \xi(t') \rangle=\delta(t-t').$$
 
  • Like
Likes H Quizzagan and Delta2
Indeed, the Langevin equation is useful in describing Brownian motion. Correct me if I am wrong, but is it that solving this differential equation yields for an equation of the mean-square displacement. This mean-square displacement which is a function of time is the analytical way to solve for the trajectory/position of the Brownian particle over time?
 
Yes, you can easily solve the equation analytically in the sense that you can derive the phase-space distribution functions. The point is that adding many Gaussian distributed independent random numbers you get again a Gaussian distribution. Thus both the momentum and the position are Gaussian distributions. Thus you have to evaluate the mean (for given initial conditions) ##(\langle x(t) \rangle, \langle p(t) \rangle)## and the covariance matrices ##\langle x_i(t) x_j(t)##, ##\langle p_i(t) p_j(t)##, and ##\langle x_i(t) p_j(t)##.

The calculation is a bit lengthy for the forum, but the idea is as follows: You calculate the Green's function of the deterministic part of the equation, i.e.,
$$\dot{G}+\gamma G=\delta(t) \; \Rightarrow \; G(t)=\Theta(t) \exp(-\gamma t)$$
Then the solution for the stochastic equation reads
$$p(t)=-\sqrt{2B} \int_0^t \mathrm{d} t' G(t-t') \xi(t')+p_0 \exp(-\gamma t).$$
Because ##\dot{x}=p/m## you need to integrate this only once more for ##x(t)##, and then you can evaluate all the needed averages using
$$\langle \xi(t) \rangle=0, \quad \langle \xi(t) \xi(t') \rangle=\delta(t-t').$$
 
  • Like
Likes H Quizzagan
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top