Equation of Line Passing Through \(A(-5,-4)\) & \(B, C\) & \(D\)

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Line
Click For Summary
SUMMARY

The discussion focuses on finding the equation of a line passing through the point \(A(-5,-4)\) that intersects three given lines at points \(B\), \(C\), and \(D\). The relationship between the distances from point \(A\) to these intersection points is defined by the equation \(\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right) ^2\). The method involves calculating the gradient \(m\) of the line using the coordinates of points \(B\), \(C\), and \(D\) derived from the equations of the intersecting lines. Ultimately, the value of \(m\) allows for the determination of the line's equation.

PREREQUISITES
  • Understanding of linear equations and gradients
  • Familiarity with coordinate geometry
  • Ability to manipulate algebraic equations
  • Knowledge of distance formulas in geometry
NEXT STEPS
  • Explore methods for solving systems of linear equations
  • Learn about the distance formula in coordinate geometry
  • Study the concept of gradients and slopes of lines
  • Investigate the application of the Pythagorean theorem in geometric contexts
USEFUL FOR

Students and educators in mathematics, particularly those focusing on geometry and algebra, as well as anyone interested in solving problems involving lines and distances in a coordinate plane.

sbhatnagar
Messages
87
Reaction score
0
A line through \(A(-5,-4)\) meets the lines \(x+3y+2=0\), \(2x+y+4=0\) and \(x-y-5=0\) at the points \(B, \ C\) and \(D\) respectively. If

\[\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right) ^2 \]

, find the equation of the line.
 
Mathematics news on Phys.org
sbhatnagar said:
A line through \(A(-5,-4)\) meets the lines \(x+3y+2=0\), \(2x+y+4=0\) and \(x-y-5=0\) at the points \(B, \ C\) and \(D\) respectively. If

\[\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right) ^2 \]

, find the equation of the line.

Hi sbhatnagar, :)

I shall outline the method to solve this problem.

Let \(m\) be the gradient of the line through \(A(-5,-4),\,B(x_{1},y_{1}),\,C(x_{2},y_{2})\mbox{ and }D(x_{3},y_{3})\). Then,

\[\frac{y_i+4}{x_i+5}=m\mbox{ for each }i=1,\,2,\,3\]

Also since the points B, C and D are on the lines given by \(x+3y+2=0\), \(2x+y+4=0\) and \(x-y-5=0\) respectively, we have,

\[x_1+3y_1+2=0\]

\[2x_2+y_2+4=0\]

\[x_{3}-y_{3}-5=0\]

Using the above six equations we can find \(x_1,\,x_{2},\,x_{3},\,y_1,\,y_{2},\mbox{ and }y_{3}\) in terms of \(m\).

Finally using the given equation, \(\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right) ^2 \) the value of \(m\) can be found. Hence the equation of the line can be determined.

Kind Regards,
Sudharaka.
 
Last edited:
My solution can be found in the spoiler.

Let equation of line \(AC\) be

\[\frac{y+4}{\sin \theta}=\frac{x+5}{\cos \theta}=r\]

Let line \(AE\) make angle \(\theta\) with the \(x\)-axis and intersects \(x+3y+2=0\) at \(B\) at a distance \(r_1\) and line \(2x+y+4=0\) at \(C\) at a distance \(r_2\) and line \(x-y-5=0\) at \(D\) at a distance \(r_3\).
\[\therefore \ AB=r_1 , \ AC=r_2, \ AD=r_3\]

Putting \(x=r_1\cos \theta -5\) and \(y=r_1\sin \theta -4\) in \(x+3y+2 =0\) we get

\[\begin{aligned}
x+3y+2 &=0 \\
\Rightarrow r_1 \cos \theta -4 +3(r_1 \sin \theta -4)+2 &=0 \\
\Rightarrow r_1 &= \frac{-5-3(4)+2}{\cos \theta +3 \sin \theta} \\
\Rightarrow r_1 &= \frac{15}{\cos \theta +3 \sin \theta} \quad \cdots \text{(i)}

\end{aligned}\]

Similarly,

\[\begin{aligned}
r_2 &= \frac{10}{2\cos \theta + \sin \theta} \quad \cdots \text{(ii})\\
r_3 &= \frac{6}{\cos \theta - \sin \theta} \quad \cdots \text{(iii)}

\end{aligned}\]

But it is given that

\[\begin{aligned} \left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 &= \left(\frac{6}{AD}\right)^2 \\ \Rightarrow \left(\frac{15}{r_1}\right)^2 + \left(\frac{10}{r_2}\right)^2 &= \left(\frac{6}{r_3}\right)^2 \\ \Rightarrow (\cos \theta + 3\sin \theta )^2+(2\cos \theta + \sin \theta)^2 &=(\cos \theta -\sin \theta)^2 \quad [\text{from equations (i), (ii) and (iii)}] \\ 4\cos^2 \theta + 6 \sin ^2 \theta +12 \sin \theta \cos \theta &=0 \\ (2\cos \theta + 3 \sin \theta )^2 &=0 \\ 2\cos \theta + 3 \sin \theta &=0 \\ \tan \theta &=-\frac{2}{3}\end{aligned}\]

On substituting this in the equation of \(AC\), we get

\[y+4=(x+5)\tan \theta \\ \Rightarrow y+4=-\frac{2}{3}(x+5) \\ \Rightarrow 2x+3y+22=0\]
 

Attachments

  • figure.png
    figure.png
    2 KB · Views: 115

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K