Equations for aiming tennis ball parabolic motion

AI Thread Summary
The discussion focuses on enhancing the computer player's ability to hit a tennis ball in a 3D game by optimizing the trajectory to pass through three specific points: the starting position, the height of the net, and the target position on the ground. The physics model used neglects air resistance, simplifying the problem to solving linear equations for parabolic motion. The initial velocity and angle must be calculated to ensure the ball clears the net and lands at the target. Key equations involve determining time to cover the court distance and using motion equations to find the required initial velocity for the vertical motion. The conversation emphasizes the need for a robust mathematical approach to achieve realistic ball trajectories in the game.
markofjohnson
Messages
2
Reaction score
0
Hi, I'm writting a 3D tennis game, and I need to revamp how the computer player hits the ball. I have a simple physics model for trajectory (no air resistance) that works great, but now I need to have the computer player play smarter, and make judgements about how to get the ball over the net optimally and to the target on the other side of the court.

This is a problem of solving linear equations for parabolic motion? (Again, there is no air drag in this game). Specifically what I need is what is the angle and velocity to hit the ball so that the ball goes through 3 points:

- Start position when hit is x1,y1,z1.
- The ball must be hit to x3,y3,z3 (z3=0 when hit ground).
- The ball must also get over the net at height z2 ie position x2,y2,z2.

What equations or code will tell me speed and velocity for hitting the ball through these 3 points?

Many thanks
Mark
 
Last edited by a moderator:
Physics news on Phys.org
what language are you writing this in?
 
Its for iPhone, so C, but I can translate from anything if you have some handy source code. Thanks.
 
Motion occurs in three dimensions but we can simplify it to 2 dimensions by considering only the plane containing the vector we want to hit the ball in (so the 2 dimensions of the plane are up and forward).

I assume your physics model neglects drag forces so, in the forward direction, the ball is given an initial velocity via. an impulse force and then no further acceleration occurs. So, motion in the forward dimension is simply

x = v0*t + x0

or equivalently,
d = rt

Note that, hitting the ball amounts to choosing initial velocity. For this dimension we can pick an arbitrary velocity. Then we solve for t (time) to see how long it will take to cover the distance from one side of the court to the other.

The second step is to consider the vertical motion of a parabola with that previous time value in mind, such that the final height will be 0 at the given time t, indicating that the motion has completed it's arc.

From the equations of motion with constant acceleration,
http://en.wikipedia.org/wiki/Equation_of_motion

What variables do we know? We know the final time, final position, and final acceleration but not the final velocity so we choose this equation:

x = x0+ v0*t + 1/2*a*t^2

x0 = initial height
x = final height ( = 0, since it hits table)
v0 = unknown
t = known, from first part
a = known, gravity

So you can just solve for v0.

Now you can combine the initial velocity that you chose randomly from step 1 with this one and that gives you the initial velocity vector (speed is just the length of the velocity vector)
 
height=(v^2(sin(x))^2))/(2g)
range=(v^2*sin(2x))/g
v=speed
g=9.8ms^-2
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top