Pierre007080
- 111
- 0
DaleSpam said:Yes. Or rather, the spectrum received would depend on the temperature of the blackbody and the gravitational time dilation between the blackbody and the receiver. The time dilation then is dependant on the difference in "gravitational altitude".
Thanks for your response. I have re-read the previous discussion but the discrepancy seems to be that I am under the impression that time (the tick of the clock) exists with regard to the "gravitational potential". The "tick of the clock" surely has to be slower at the higher "gravitational potential" on the surface of the larger mass? The "dilation" depends upon the movement of the wave to a higher "gravitational potential". The reason I chose the surface of two same size objects as my reference frame was to eliminate the movement (or dilation) aspect and focus on the fact that the larger mass has a HIGHER gravitational potential at it's surface and that the EMISSION frequency and wavelength would differ as observed by a distant observer at right angles to the emission, even though the temperature of the body is the same. Of course both local parties would measure the frequency as that typical of the black body radiation spectrum.