In modern relativity, the mass is no longer considered to be increasing and the term "relativistic mass" is no longer encouraged. It is however reasonable to state that to an inertial observer in flat space, the kinetic energy of the accelerating particle is continuously increasing as is the the relative velocity. The inertial observer in the gravitational context is a free falling observer and to a free falling observer the particle at rest in the gravitational field is also increasing in kinetic energy and relative velocity. To an observer accelerating alongside the accelerating particle in flat space, the kinitic energy and relative velocity of the particle is not changing. To an (accelerating) observer at rest with the particle that is itself at rest in the gravitational field, the kinetic energy and relative velocity is also not changing. Looked at like that, the particle subjected to constant force in flat space is equivalent to a particle at rest in a gravitational field. Hope that helps.