Equivalence Relations and Quotient Sets - Verifying a Claim

matheater
Messages
7
Reaction score
0
I have a question...
"Is the quotient set of a set S relative to a equivalence relation on S a subset of S?"
I suppose "no",since the each member of the quotient set is a subset of S and consequently it is a subset of the power set of S,but I have e book saying that "yes",I am a bit confused,can anyone ensure me?
 
Physics news on Phys.org
No, the quotient set of set S, relative to some equivalence relation on S, is not a subset of S. It is the set of all equivalence classes defined by the relation and so, as you say, a subset of the power set of S. We could, by choosing one "representative" of each equivalence class, "identify" the quotient set with a subset of S but that can be done in many different ways depending on the choices of "representative".

For example, if S= N, the natural numbers, and the relation is xRy if and only if x-y is a multiple of 3, then the quotient set is the set containing: the multiples of 3, the set of numbers of the form 3n+1, and the set of numbers of the form 3n+2. We can, and often do identify those with {0, 1, 2}. But we could as easily identify them with {3, 4, 5}, etc.
 
Thank u very much,I am complete agree with u.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
5
Views
536
Replies
2
Views
2K
Replies
3
Views
4K
Replies
1
Views
1K
Replies
14
Views
2K
Replies
3
Views
430
Replies
10
Views
4K
Back
Top