Equivalent definition of the supremum

AI Thread Summary
The discussion centers on the definition of the supremum of a set M, specifically whether the condition "y >= x implies there exists m in M such that m >= x" is equivalent to y being the supremum of M. It is argued that this condition is not true, as demonstrated by counterexamples where y equals x. The participants suggest modifying the condition to "y > x implies there exists m in M such that m >= x," which is confirmed to be correct. This revised definition aligns better with the properties of the supremum. The conversation concludes with agreement on the validity of the modified definition.
submartingale
Messages
4
Reaction score
0
Hello everyone,

is the following an equivalent definition of the supremum of a set M, M subset of R?

y=sup{M} if and only if

given that y is an upper bound of M and x is any real number,
y >= x implies there exists m in M so that m >=x.

pf:
Let x_n be a sequence approaching y from the right. Then
for each x_n, there exists m_n in M so that m_n >=x_n.
Since y is an upper bound of M, then we have that y= lim m_n >= lim x_n.
Therefore, if m' is any another upper bound, then m'>=y for all m in M.

Thanks
 
Mathematics news on Phys.org


This is not true. Specifically, if y=sup(M), then it does not need to holds that y>=x implies m>=x for an m.

Indeed, take y=x.
 


micromass said:
This is not true. Specifically, if y=sup(M), then it does not need to holds that y>=x implies m>=x for an m.

Indeed, take y=x.

If you take y=x, then there exists m in M so that m>=x=y. But y is an upper bound of M, so y=x=m.
 


Take A=]0,1[, then y=1 is a supremum. Does there exist an m in A such that m>=y??
 


micromass said:
Take A=]0,1[, then y=1 is a supremum. Does there exist an m in A such that m>=y??

What if we replace it by

y=sup{M} if and only if

given that y is an upper bound of M and x is any real number,
y >x implies there exists m in M so that m >=x.

Thanks
 


submartingale said:
What if we replace it by

y=sup{M} if and only if

given that y is an upper bound of M and x is any real number,
y >x implies there exists m in M so that m >=x.

Thanks

That's indeed correct.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top