MHB Equlateral Triangle: Prove $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Triangle
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given a triangle with angles $\alpha, \beta, \gamma$ opposite respectively to the sides $a,b,c$. Show in at least two different ways, that the triangle is equilateral if and only if $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$.
 
Mathematics news on Phys.org
lfdahl said:
Given a triangle with angles $\alpha, \beta, \gamma$ opposite respectively to the sides $a,b,c$. Show in at least two different ways, that the triangle is equilateral if and only if $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$.

Method 1)

$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
hence $\frac{1}{c}\cos \gamma =\frac{1}{b} \cos \beta = \frac{1}{a} \cos \alpha$
we have from sin rule $\frac{1}{c}\sin \gamma =\frac{1}{b} \sin \beta = \frac{1}{a} \sin \alpha$
square and add to get $\frac{1}{c^2} =\frac{1}{b^2} = \frac{1}{a^2} $ or $a=b=c$ hence equilateral

for the other part if $a=b=c$ then
$ \alpha = \beta = \gamma$
hence $ \cos \alpha = \cos \beta = \cos \gamma$ and by multiplying we get the result

method 2

using the values of cos we get
$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
$<==> a^2+b^2-c^2 = a^2+c^2-b^2= b^2 + c^2 - a^2$
from $a^2+b^2-c^2 = a^2+c^2-b^2$
$<==> b^2-c^2<==>b=c$ simlilarly a =c $<==>$ it is equilateral
 
kaliprasad said:
Method 1)

$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
hence $\frac{1}{c}\cos \gamma =\frac{1}{b} \cos \beta = \frac{1}{a} \cos \alpha$
we have from sin rule $\frac{1}{c}\sin \gamma =\frac{1}{b} \sin \beta = \frac{1}{a} \sin \alpha$
square and add to get $\frac{1}{c^2} =\frac{1}{b^2} = \frac{1}{a^2} $ or $a=b=c$ hence equilateral

for the other part if $a=b=c$ then
$ \alpha = \beta = \gamma$
hence $ \cos \alpha = \cos \beta = \cos \gamma$ and by multiplying we get the result

method 2

using the values of cos we get
$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
$<==> a^2+b^2-c^2 = a^2+c^2-b^2= b^2 + c^2 - a^2$
from $a^2+b^2-c^2 = a^2+c^2-b^2$
$<==> b^2-c^2<==>b=c$ simlilarly a =c $<==>$ it is equilateral
Well done, kaliprasad! Thankyou for your participation!(Cool)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top