Equlateral Triangle: Prove $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary
SUMMARY

The discussion centers on proving that a triangle is equilateral if and only if the equation \( ab \cos \gamma = ac \cos \beta = bc \cos \alpha \) holds true. Two distinct methods are suggested for this proof, emphasizing the relationship between the sides and angles of the triangle. The participants engage in deriving the cosine values and applying them to demonstrate the necessary conditions for equilateral triangles. The consensus confirms the validity of the statement through mathematical reasoning.

PREREQUISITES
  • Understanding of triangle properties and definitions
  • Knowledge of trigonometric functions, specifically cosine
  • Familiarity with the Law of Cosines
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the Law of Cosines in detail
  • Explore trigonometric identities related to cosine
  • Investigate properties of equilateral triangles
  • Practice proving geometric theorems using trigonometry
USEFUL FOR

Mathematics students, geometry enthusiasts, and educators looking to deepen their understanding of triangle properties and trigonometric relationships.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given a triangle with angles $\alpha, \beta, \gamma$ opposite respectively to the sides $a,b,c$. Show in at least two different ways, that the triangle is equilateral if and only if $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$.
 
Mathematics news on Phys.org
lfdahl said:
Given a triangle with angles $\alpha, \beta, \gamma$ opposite respectively to the sides $a,b,c$. Show in at least two different ways, that the triangle is equilateral if and only if $ab \cos \gamma = ac \cos \beta = bc \cos \alpha$.

Method 1)

$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
hence $\frac{1}{c}\cos \gamma =\frac{1}{b} \cos \beta = \frac{1}{a} \cos \alpha$
we have from sin rule $\frac{1}{c}\sin \gamma =\frac{1}{b} \sin \beta = \frac{1}{a} \sin \alpha$
square and add to get $\frac{1}{c^2} =\frac{1}{b^2} = \frac{1}{a^2} $ or $a=b=c$ hence equilateral

for the other part if $a=b=c$ then
$ \alpha = \beta = \gamma$
hence $ \cos \alpha = \cos \beta = \cos \gamma$ and by multiplying we get the result

method 2

using the values of cos we get
$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
$<==> a^2+b^2-c^2 = a^2+c^2-b^2= b^2 + c^2 - a^2$
from $a^2+b^2-c^2 = a^2+c^2-b^2$
$<==> b^2-c^2<==>b=c$ simlilarly a =c $<==>$ it is equilateral
 
kaliprasad said:
Method 1)

$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
hence $\frac{1}{c}\cos \gamma =\frac{1}{b} \cos \beta = \frac{1}{a} \cos \alpha$
we have from sin rule $\frac{1}{c}\sin \gamma =\frac{1}{b} \sin \beta = \frac{1}{a} \sin \alpha$
square and add to get $\frac{1}{c^2} =\frac{1}{b^2} = \frac{1}{a^2} $ or $a=b=c$ hence equilateral

for the other part if $a=b=c$ then
$ \alpha = \beta = \gamma$
hence $ \cos \alpha = \cos \beta = \cos \gamma$ and by multiplying we get the result

method 2

using the values of cos we get
$ab \cos \gamma = ac \cos \beta = bc \cos \alpha$
$<==> a^2+b^2-c^2 = a^2+c^2-b^2= b^2 + c^2 - a^2$
from $a^2+b^2-c^2 = a^2+c^2-b^2$
$<==> b^2-c^2<==>b=c$ simlilarly a =c $<==>$ it is equilateral
Well done, kaliprasad! Thankyou for your participation!(Cool)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K