Error estimation using differentials

bawbag
Messages
13
Reaction score
1

Homework Statement



A force of 500N is measured with a possible error of 1N. Its component in a direction 60° away from its line of action is required, where the angle is subject to an error of 0.5°. What (approximately) is the largest possible error in the component?

Homework Equations





The Attempt at a Solution



The component force is F_x = F cos \theta

so lnF_x~=~lnF~+~lncos\theta

applying differentials: \frac{dF_x}{F_x} = \frac{dF}{F} + \frac{d~cos\theta}{cos\theta} (-sin\theta)=\frac{dF}{F} + \frac{sin^{2} \theta}{cos\theta}d\theta

plugging in values \frac{dF_x}{F_x} = \frac{1}{500} + \frac{3}{4} \frac{2}{1} \frac{1}{2} \frac{\pi}{180} = 0.002 + 0.013 = 0.015
so the error is (0.015)(500)cos(60) = 3.75N

The solution says 4.28N, however, which I confirmed by checking each error combination. Where am I going wrong here?

Thanks in advance.
 
Physics news on Phys.org
You differentiated incorrectly. You should have
$$\frac{dF_x}{F_x} = \frac{dF}{F} + \frac{d\theta}{\cos\theta}(-\sin\theta).$$
 
vela said:
You differentiated incorrectly. You should have
$$\frac{dF_x}{F_x} = \frac{dF}{F} + \frac{d\theta}{\cos\theta}(-\sin\theta).$$


Gotcha, I figured it would be something simple like that! Thanks a lot!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top