neworder1
- 64
- 0
Homework Statement
Let P be a rectangle , f_{0} : \partial P \rightarrow R) continuous and Lipschitz, C_{0} = \{ f \in C^{2}(P) : f=f_{0} \ on \ \partial P \}. and finally S : C_{0} \rightarrow R a functional:
S(f) = \int^b_a (\int^d_c (\frac{\partial f}{\partial x})^{2}\,dy)\,dx + \int^d_c (\int^a_b (\frac{\partial f}{\partial y})^{2}\,dx)\,dy.
Write Euler-Lagrange equation for S.
Homework Equations
The Attempt at a Solution
I tried writing: S(f) = \int^b_a (\int^d_c (\frac{\partial f}{\partial x})^{2} + (\frac{\partial f}{\partial y})^{2}\,dy)\,dx, so the proper Lagrangian would be L(x) = \int^d_c (\frac{\partial f}{\partial x})^{2} + (\frac{\partial f}{\partial y})^{2}\,dy.
Then the Euler-Lagrange equation should be \frac{d}{dx}\frac{\partial L}{\partial f^{'}_{x}} = 0 \leftrightarrow \frac{d}{dx}\frac{\partial }{\partial f^{'}_{x}}\int^d_c (\frac{\partial f}{\partial x})^{2}\,dy = 0, (L^{'} = \int^d_c (\frac{\partial f}{\partial x})^{2}\,dy) and now since \frac{dL^{'}}{dx} = \frac{\partial L^{'}}{\partial f_{x}^{'}}\frac{\partial f_{x}^{'}}{\partial x}, we can rewrite that as \frac{d}{dx}\frac{\frac{d}{dx}\int^d_c (\frac{\partial f}{\partial x})^{2}\,dy}{f_{xx}^{''}} = 0 \leftrightarrow \frac{d}{dx}\frac{\int^d_c \frac{\partial}{\partial x}(\frac{\partial f}{\partial x})^{2}\,dy}{f_{xx}^{''}} = 0 \leftrightarrow \frac{d}{dx}\frac{\int^d_c 2f_{x}^{'}f_{xx}^{''}\,dy}{f_{xx}^{''}} = 0. but what then?
Last edited: