MHB Evaluate (1-a)/(1+a)+(1-b)/(1+b)+(1-c)/(1+c)

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
To evaluate the expression Y = (1-a)/(1+a) + (1-b)/(1+b) + (1-c)/(1+c) for the roots a, b, c of the polynomial x^3 - x - 1 = 0, the relationships among the roots are utilized: a + b + c = 0, ab + ac + bc = -1, and abc = 1. The numerator simplifies to 1, while the denominator also simplifies to 1, leading to Y = 1. Multiple methods were discussed, confirming the result. The final conclusion is that the evaluated expression equals 1.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $a,\,b,\,c$ are the roots of $x^3-x-1=0$, evaluate $\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}$.
 
Mathematics news on Phys.org
$\dfrac{1-a}{1+a}=1- \dfrac{2a}{1+a}=1-\dfrac{2}{1+\dfrac{1}{a}}$
$a,\,b,\,c$ are the roots of $x^3-x-1=0$
so $\dfrac{1}{a},\,\dfrac{1}{b},\,\dfrac{1}{c}$ are the roots of $\dfrac{1}{x^3}-\dfrac{1}{x}-1=0$
or $x^3+x^2-1=0$
so $1+\dfrac{1}{a},\,1+\dfrac{1}{b},\,1+\dfrac{1}{c}$ are the roots of
$(x-1)^3+(x-1)^2-1=0$
or $x^3-3x^2+3x-1 +x^2-2x+1-1=0$
or $x^3-2x^2+x-1=0$
so $\dfrac{1}{1+\dfrac{1}{a}},\,\dfrac{1}{1+\dfrac{1}{b}},\,\dfrac{1}{1+\dfrac{1}{c}}$ are the roots of
$\dfrac{1}{x^3}-\dfrac{2}{x^2}+\dfrac{1}{x}-1=0$
or
$x^3-x^2+2x-1= 0$
so $\dfrac{1}{1+\dfrac{1}{a}}+\,\dfrac{1}{1+\dfrac{1}{b}}+\,\dfrac{1}{1+\dfrac{1}{c}}= 1$
or $\dfrac{a}{1+a}+\,\dfrac{b}{1+b}+\,\dfrac{c}{1+c}= 1$
or $\dfrac{2a}{1+a}+\,\dfrac{2b}{1+b}+\,\dfrac{2c}{1+c}= 2$
or $1- \dfrac{2a}{1+a}+1- \,\dfrac{2b}{1+b}+1-\,\dfrac{2c}{1+c}= 3-2$
or $\dfrac{1-a}{1+a}+\,\dfrac{1-b}{1+b}+\,\dfrac{1-c}{1+c}= 1$
 
Hello, anemone!

If $a,\,b,\,c$ are the roots of $x^3-x-1=0$,
evaluate $\,Y \;=\;\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}$
[sp]
Since $a,\,b,\,c$ are roots of the cubic: $\;\begin{Bmatrix}a+b+c &=& 0 \\ ab + bc + ac &=& \text{-}1 \\ abc &=& 1 \end{Bmatrix}$Then: $\,Y \,=\,\dfrac{(1-a)(1+b)(1+c) + (1+a)(1-b)(1+c) + (1+a)(1+b)(1-c)}{(1+a)(1+b)(1+c)} $

The numerator simplifies to:
$\quad 3 + (a+b+c) - (ab + bc + ac) - 3abc$
$\qquad =\:3 + 0 - (\text{-}1) - 3(1) \;=\;1$

The denominator simplifies to:
$\quad 1 + (a+b+c) + (ab+bc+ac) + abc$
$\qquad =\:1+0+(\text{-}1)+1 \;=\;1$

Therefore: $\:Y \;=\;\dfrac{1}{1} \;=\;1$
[/sp]
 
soroban said:
Hello, anemone![sp]
Since $a,\,b,\,c$ are roots of the cubic: $\;\begin{Bmatrix}a+b+c &=& 0 \\ ab + bc + ac &=& \text{-}1 \\ abc &=& 1 \end{Bmatrix}$Then: $\,Y \,=\,\dfrac{(1-a)(1+b)(1+c) + (1+a)(1-b)(1+c) + (1+a)(1+b)(1-c)}{(1+a)(1+b)(1+c)} $

The numerator simplifies to:
$\quad 3 + (a+b+c) - (ab + bc + ac) - 3abc$
$\qquad =\:3 + 0 - (\text{-}1) - 3(1) \;=\;1$

The denominator simplifies to:
$\quad 1 + (a+b+c) + (ab+bc+ac) + abc$
$\qquad =\:1+0+(\text{-}1)+1 \;=\;1$

Therefore: $\:Y \;=\;\dfrac{1}{1} \;=\;1$
[/sp]

neat and elegent
 
soroban said:
Hello, anemone![sp]
Since $a,\,b,\,c$ are roots of the cubic: $\;\begin{Bmatrix}a+b+c &=& 0 \\ ab + bc + ac &=& \text{-}1 \\ abc &=& 1 \end{Bmatrix}$Then: $\,Y \,=\,\dfrac{(1-a)(1+b)(1+c) + (1+a)(1-b)(1+c) + (1+a)(1+b)(1-c)}{(1+a)(1+b)(1+c)} $

The numerator simplifies to:
$\quad 3 + (a+b+c) - (ab + bc + ac) - 3abc$
$\qquad =\:3 + 0 - (\text{-}1) - 3(1) \;=\;1$

The denominator simplifies to:
$\quad 1 + (a+b+c) + (ab+bc+ac) + abc$
$\qquad =\:1+0+(\text{-}1)+1 \;=\;1$

Therefore: $\:Y \;=\;\dfrac{1}{1} \;=\;1$
[/sp]

Well done, soroban! Very neatly done instead!(Yes) And thanks for participating!:)

kaliprasad said:
$\dfrac{1-a}{1+a}=1- \dfrac{2a}{1+a}=1-\dfrac{2}{1+\dfrac{1}{a}}$
$a,\,b,\,c$ are the roots of $x^3-x-1=0$
so $\dfrac{1}{a},\,\dfrac{1}{b},\,\dfrac{1}{c}$ are the roots of $\dfrac{1}{x^3}-\dfrac{1}{x}-1=0$
or $x^3+x^2-1=0$
so $1+\dfrac{1}{a},\,1+\dfrac{1}{b},\,1+\dfrac{1}{c}$ are the roots of
$(x-1)^3+(x-1)^2-1=0$
or $x^3-3x^2+3x-1 +x^2-2x+1-1=0$
or $x^3-2x^2+x-1=0$
so $\dfrac{1}{1+\dfrac{1}{a}},\,\dfrac{1}{1+\dfrac{1}{b}},\,\dfrac{1}{1+\dfrac{1}{c}}$ are the roots of
$\dfrac{1}{x^3}-\dfrac{2}{x^2}+\dfrac{1}{x}-1=0$
or
$x^3-x^2+2x-1= 0$
so $\dfrac{1}{1+\dfrac{1}{a}}+\,\dfrac{1}{1+\dfrac{1}{b}}+\,\dfrac{1}{1+\dfrac{1}{c}}= 1$
or $\dfrac{a}{1+a}+\,\dfrac{b}{1+b}+\,\dfrac{c}{1+c}= 1$
or $\dfrac{2a}{1+a}+\,\dfrac{2b}{1+b}+\,\dfrac{2c}{1+c}= 2$
or $1- \dfrac{2a}{1+a}+1- \,\dfrac{2b}{1+b}+1-\,\dfrac{2c}{1+c}= 3-2$
or $\dfrac{1-a}{1+a}+\,\dfrac{1-b}{1+b}+\,\dfrac{1-c}{1+c}= 1$

Hi kaliprasad, your solution is great as well, thanks for participating, kali!

Another method that is quite similar to kali's method:

$\begin{align*}\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}&=\dfrac{1+a-2a}{1+a}+\dfrac{1+b-2b}{1+b}+\dfrac{1+c-2c}{1+c}\\&=3-2\left(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\right)\\&=3-2\left(\dfrac{1+a-1}{1+a}+\dfrac{1+b-1}{1+b}+\dfrac{1+c-1}{1+c}\right)\\&=3-6+2\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\\&=2\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)-3\end{align*}$

We're told that $a,\,b,\,c$ are the roots of $f(x)=x^3-x-1$, hence, the function $f(x-1)=(x-1)^3-(x-1)-1=x^3-3x^2+2x-1$ has roots $a+1,\,b+1,\,c+1$ and hence the sum of the reciprocal roots of $a+1,\,b+1,\,c+1$ is 2.

$\therefore \dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}=2\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)-3=2(2)-3=1$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top