Evaluate (1-a)/(1+a)+(1-b)/(1+b)+(1-c)/(1+c)

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around evaluating the expression $\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}$ where $a, b, c$ are the roots of the polynomial $x^3-x-1=0$. Participants explore various approaches to simplify and compute the expression, focusing on algebraic manipulation and properties of the roots.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the expression and asks for its evaluation based on the roots of the cubic equation.
  • Another participant provides a detailed algebraic approach, using the relationships between the roots (sum and product) to simplify the expression, ultimately concluding that $Y = 1$.
  • Several participants reiterate the same algebraic method and arrive at the same conclusion, emphasizing the steps taken to simplify both the numerator and denominator.
  • There is a note of appreciation for the clarity and neatness of the presented solutions, indicating a positive reception of the mathematical work shared.

Areas of Agreement / Disagreement

Participants generally agree on the method used to evaluate the expression and arrive at the same result, $Y = 1$. However, there is no explicit discussion of alternative methods or any disagreement regarding the evaluation itself.

Contextual Notes

The discussion relies on specific properties of the roots of the cubic polynomial, which may not be universally applicable without further context or assumptions about the nature of the roots.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $a,\,b,\,c$ are the roots of $x^3-x-1=0$, evaluate $\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}$.
 
Mathematics news on Phys.org
$\dfrac{1-a}{1+a}=1- \dfrac{2a}{1+a}=1-\dfrac{2}{1+\dfrac{1}{a}}$
$a,\,b,\,c$ are the roots of $x^3-x-1=0$
so $\dfrac{1}{a},\,\dfrac{1}{b},\,\dfrac{1}{c}$ are the roots of $\dfrac{1}{x^3}-\dfrac{1}{x}-1=0$
or $x^3+x^2-1=0$
so $1+\dfrac{1}{a},\,1+\dfrac{1}{b},\,1+\dfrac{1}{c}$ are the roots of
$(x-1)^3+(x-1)^2-1=0$
or $x^3-3x^2+3x-1 +x^2-2x+1-1=0$
or $x^3-2x^2+x-1=0$
so $\dfrac{1}{1+\dfrac{1}{a}},\,\dfrac{1}{1+\dfrac{1}{b}},\,\dfrac{1}{1+\dfrac{1}{c}}$ are the roots of
$\dfrac{1}{x^3}-\dfrac{2}{x^2}+\dfrac{1}{x}-1=0$
or
$x^3-x^2+2x-1= 0$
so $\dfrac{1}{1+\dfrac{1}{a}}+\,\dfrac{1}{1+\dfrac{1}{b}}+\,\dfrac{1}{1+\dfrac{1}{c}}= 1$
or $\dfrac{a}{1+a}+\,\dfrac{b}{1+b}+\,\dfrac{c}{1+c}= 1$
or $\dfrac{2a}{1+a}+\,\dfrac{2b}{1+b}+\,\dfrac{2c}{1+c}= 2$
or $1- \dfrac{2a}{1+a}+1- \,\dfrac{2b}{1+b}+1-\,\dfrac{2c}{1+c}= 3-2$
or $\dfrac{1-a}{1+a}+\,\dfrac{1-b}{1+b}+\,\dfrac{1-c}{1+c}= 1$
 
Hello, anemone!

If $a,\,b,\,c$ are the roots of $x^3-x-1=0$,
evaluate $\,Y \;=\;\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}$
[sp]
Since $a,\,b,\,c$ are roots of the cubic: $\;\begin{Bmatrix}a+b+c &=& 0 \\ ab + bc + ac &=& \text{-}1 \\ abc &=& 1 \end{Bmatrix}$Then: $\,Y \,=\,\dfrac{(1-a)(1+b)(1+c) + (1+a)(1-b)(1+c) + (1+a)(1+b)(1-c)}{(1+a)(1+b)(1+c)} $

The numerator simplifies to:
$\quad 3 + (a+b+c) - (ab + bc + ac) - 3abc$
$\qquad =\:3 + 0 - (\text{-}1) - 3(1) \;=\;1$

The denominator simplifies to:
$\quad 1 + (a+b+c) + (ab+bc+ac) + abc$
$\qquad =\:1+0+(\text{-}1)+1 \;=\;1$

Therefore: $\:Y \;=\;\dfrac{1}{1} \;=\;1$
[/sp]
 
soroban said:
Hello, anemone![sp]
Since $a,\,b,\,c$ are roots of the cubic: $\;\begin{Bmatrix}a+b+c &=& 0 \\ ab + bc + ac &=& \text{-}1 \\ abc &=& 1 \end{Bmatrix}$Then: $\,Y \,=\,\dfrac{(1-a)(1+b)(1+c) + (1+a)(1-b)(1+c) + (1+a)(1+b)(1-c)}{(1+a)(1+b)(1+c)} $

The numerator simplifies to:
$\quad 3 + (a+b+c) - (ab + bc + ac) - 3abc$
$\qquad =\:3 + 0 - (\text{-}1) - 3(1) \;=\;1$

The denominator simplifies to:
$\quad 1 + (a+b+c) + (ab+bc+ac) + abc$
$\qquad =\:1+0+(\text{-}1)+1 \;=\;1$

Therefore: $\:Y \;=\;\dfrac{1}{1} \;=\;1$
[/sp]

neat and elegent
 
soroban said:
Hello, anemone![sp]
Since $a,\,b,\,c$ are roots of the cubic: $\;\begin{Bmatrix}a+b+c &=& 0 \\ ab + bc + ac &=& \text{-}1 \\ abc &=& 1 \end{Bmatrix}$Then: $\,Y \,=\,\dfrac{(1-a)(1+b)(1+c) + (1+a)(1-b)(1+c) + (1+a)(1+b)(1-c)}{(1+a)(1+b)(1+c)} $

The numerator simplifies to:
$\quad 3 + (a+b+c) - (ab + bc + ac) - 3abc$
$\qquad =\:3 + 0 - (\text{-}1) - 3(1) \;=\;1$

The denominator simplifies to:
$\quad 1 + (a+b+c) + (ab+bc+ac) + abc$
$\qquad =\:1+0+(\text{-}1)+1 \;=\;1$

Therefore: $\:Y \;=\;\dfrac{1}{1} \;=\;1$
[/sp]

Well done, soroban! Very neatly done instead!(Yes) And thanks for participating!:)

kaliprasad said:
$\dfrac{1-a}{1+a}=1- \dfrac{2a}{1+a}=1-\dfrac{2}{1+\dfrac{1}{a}}$
$a,\,b,\,c$ are the roots of $x^3-x-1=0$
so $\dfrac{1}{a},\,\dfrac{1}{b},\,\dfrac{1}{c}$ are the roots of $\dfrac{1}{x^3}-\dfrac{1}{x}-1=0$
or $x^3+x^2-1=0$
so $1+\dfrac{1}{a},\,1+\dfrac{1}{b},\,1+\dfrac{1}{c}$ are the roots of
$(x-1)^3+(x-1)^2-1=0$
or $x^3-3x^2+3x-1 +x^2-2x+1-1=0$
or $x^3-2x^2+x-1=0$
so $\dfrac{1}{1+\dfrac{1}{a}},\,\dfrac{1}{1+\dfrac{1}{b}},\,\dfrac{1}{1+\dfrac{1}{c}}$ are the roots of
$\dfrac{1}{x^3}-\dfrac{2}{x^2}+\dfrac{1}{x}-1=0$
or
$x^3-x^2+2x-1= 0$
so $\dfrac{1}{1+\dfrac{1}{a}}+\,\dfrac{1}{1+\dfrac{1}{b}}+\,\dfrac{1}{1+\dfrac{1}{c}}= 1$
or $\dfrac{a}{1+a}+\,\dfrac{b}{1+b}+\,\dfrac{c}{1+c}= 1$
or $\dfrac{2a}{1+a}+\,\dfrac{2b}{1+b}+\,\dfrac{2c}{1+c}= 2$
or $1- \dfrac{2a}{1+a}+1- \,\dfrac{2b}{1+b}+1-\,\dfrac{2c}{1+c}= 3-2$
or $\dfrac{1-a}{1+a}+\,\dfrac{1-b}{1+b}+\,\dfrac{1-c}{1+c}= 1$

Hi kaliprasad, your solution is great as well, thanks for participating, kali!

Another method that is quite similar to kali's method:

$\begin{align*}\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}&=\dfrac{1+a-2a}{1+a}+\dfrac{1+b-2b}{1+b}+\dfrac{1+c-2c}{1+c}\\&=3-2\left(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\right)\\&=3-2\left(\dfrac{1+a-1}{1+a}+\dfrac{1+b-1}{1+b}+\dfrac{1+c-1}{1+c}\right)\\&=3-6+2\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\\&=2\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)-3\end{align*}$

We're told that $a,\,b,\,c$ are the roots of $f(x)=x^3-x-1$, hence, the function $f(x-1)=(x-1)^3-(x-1)-1=x^3-3x^2+2x-1$ has roots $a+1,\,b+1,\,c+1$ and hence the sum of the reciprocal roots of $a+1,\,b+1,\,c+1$ is 2.

$\therefore \dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c}=2\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)-3=2(2)-3=1$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K