MHB Evaluate Fraction: 30^4+324 to 78^4+324

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Fraction
AI Thread Summary
The discussion focuses on evaluating the fraction involving powers of integers and a constant, specifically $\dfrac{(30^4+324)(42^4+324)(54^4+324)(66^4+324)(78^4+324)}{(24^4+324)(36^4+324)(48^4+324)(60^4+324)(72^4+324)}$. Participants express enthusiasm about the problem's complexity and the cleverness required to solve it. Positive feedback is shared among users regarding the solutions provided. The problem is deemed interesting and manageable, encouraging further engagement. Overall, the thread highlights a collaborative effort to tackle a mathematical challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate, without the aid of a calculator, of the following fraction:

$\dfrac{(30^4+324)(42^4+324)(54^4+324)(66^4+324)(78^4+324)}{(24^4+324)(36^4+324)(48^4+324)(60^4+324)(72^4+324)}$.

I hope you will find this problem interesting, if it's not too difficult or intriguing to solve for.:o
 
Mathematics news on Phys.org
anemone said:
Evaluate, without the aid of a calculator, of the following fraction:

$\dfrac{(30^4+324)(42^4+324)(54^4+324)(66^4+324)(78^4+324)}{(24^4+324)(36^4+324)(48^4+324)(60^4+324)(72^4+324)}$.

I hope you will find this problem interesting, if it's not too difficult or intriguing to solve for.:o

From Sophie Germain identity:
$$x^4+4\cdot 3^4=(x^2+2\cdot 3^2-2\cdot x\cdot 3)(x^2+2\cdot 3^2+2\cdot x\cdot 3)=(x(x-6)+18)(x(x+6)+18)$$
In this problem $x=6k$ i.e
$$(x(x-6)+18)(x(x+6)+18)=18^2(2k(k-1)+1)(2k(k+1)+1)$$
For numerator, $k$ has the values $5,7,9,11,13$ and for denominator, $4,6,8,10,12$. Hence, the fraction is:
$$\frac{(2(5)(4)+1)(2(5)(6)+1)(2(7)(6)+1)(2(7)(8)+1)(2(9)(8)+1)(2(9)(10)+1)\cdots (2(13)(14)+1)}{(2(4)(3)+1)(2(4)(5)+1)(2(6)(5)+1)(2(6)(7)+1)(2(8)(7)+1)(2(8)(9)+1)\cdots 2(12)(13)+1)}$$
Most of the terms cancel and we are left with:
$$\frac{2(13)(14)+1}{2(4)(3)+1}=\frac{365}{25}=\boxed{\dfrac{73}{5}}$$
 
Pranav said:
From Sophie Germain identity:
$$x^4+4\cdot 3^4=(x^2+2\cdot 3^2-2\cdot x\cdot 3)(x^2+2\cdot 3^2+2\cdot x\cdot 3)=(x(x-6)+18)(x(x+6)+18)$$
In this problem $x=6k$ i.e
$$(x(x-6)+18)(x(x+6)+18)=18^2(2k(k-1)+1)(2k(k+1)+1)$$
For numerator, $k$ has the values $5,7,9,11,13$ and for denominator, $4,6,8,10,12$. Hence, the fraction is:
$$\frac{(2(5)(4)+1)(2(5)(6)+1)(2(7)(6)+1)(2(7)(8)+1)(2(9)(8)+1)(2(9)(10)+1)\cdots (2(13)(14)+1)}{(2(4)(3)+1)(2(4)(5)+1)(2(6)(5)+1)(2(6)(7)+1)(2(8)(7)+1)(2(8)(9)+1)\cdots 2(12)(13)+1)}$$
Most of the terms cancel and we are left with:
$$\frac{2(13)(14)+1}{2(4)(3)+1}=\frac{365}{25}=\boxed{\dfrac{73}{5}}$$

Well done, Pranav! :) See, I mentioned that this problem isn't too difficult and I'm happy that you saw the trick to solve this challenge problem! (Happy)
 
we have
$(x^4 + 18^2) = (x^4 + 2 * 18 x^2+ 18^2) - 36 x^2$
= $(x^2 + 18)^2 - (6x)^2$
=$ (x^2 + 6x + 18)(x^2 - 6x +18)= (x (x+6) + 18)(x(x-6) + 18)$
So
$30^4 + 324 = ( 30 * 36 + 18)(30 * 24 + 18)$
$24^4 + 324 = ( 30 * 24 + 18)( 18 * 24 + 18)$

by expanding numerator and denominator we are left with( as other terms cancel)

value = $\frac{(78 * 84 + 18)}{(24 * 18 + 18)}$
= $\frac{18 (13 * 28 + 1)}{18 * (24 + 1)}$
= $\frac{(13 * 28 + 1)}{ (24 + 1)}$
= $\frac{365}{25}$
= $\frac{73}{5}$
 
Great thread, and great solutions too! (Bow)
 
DreamWeaver said:
Great thread, and great solutions too! (Bow)

Thank you for your kind words, DreamWeaver!:) I really appreciate it!:o
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top