Evaluate Inverse of Hi M.H.B.: Math Problem

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary

Discussion Overview

The discussion revolves around evaluating the inverse of a specific function defined by a polynomial expression, particularly in the context of an Olympiad math competition problem. Participants explore various approaches to find the inverse of the function \( f(x) = (x^{256}+1)(x^{64}+1)(x^{16}+1)(x^{4}+1)(x+1) \) for \( 0 < x < 1 \) and to compute \( f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right) \).

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses difficulty in solving the problem after multiple attempts and seeks assistance from the community.
  • Another participant suggests factoring the denominator of the expression \( 1 - x^{512} \) into multiple factors and recommends canceling common factors to simplify the problem.
  • A different participant shares insights from an expert who approximated the value of \( f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right) \) but notes that the approach only yields an approximate result.
  • The expert's method involves relating \( f(x) \) and \( f(x^2) \) and deriving a relationship that leads to an approximate evaluation of the target expression.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a definitive solution to the problem. Multiple approaches are presented, and while some participants share insights and methods, the discussion remains unresolved with no clear agreement on the exact value of the inverse.

Contextual Notes

Participants acknowledge that the approaches discussed lead to approximate values rather than exact solutions, indicating limitations in the methods used and the complexity of the problem.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

The following problem has been a really vexing problem (for me) because I believe there would be a tricky way of approaching it but I could not solve it after working with it on and off for two days, it is an Olympiad math competition problem, and so far no one that I know of has solved it.

I think the time has come to ask for help at MHB. If anyone has ideas to solve it, I would appreciate the help.

Problem:

Let $f(x)=(x^{256}+1)(x^{64}+1)(x^{16}+1)(x^{4}+1)(x+1)$ for $0<x<1$.

Evaluate $f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right)$.

My futile attempt is based on the core concept of utilizing the formula $f^{-1}(f(x))=x$ where I got

$f(x)=\dfrac{x^{512}-1}{(x-1)(x^2+1)(x^8+1)(x^{32}+1)(x^{128}+1)}$ that leads to $\dfrac{1}{(1-x)f(x)}=\dfrac{(x^2+1)(x^8+1)(x^{32}+1)(x^{128}+1)}{1-x^{512}}$, unfortunately all of these did not help to shed any insight for me to proceed.
 
Mathematics news on Phys.org
anemone said:
...that leads to $\dfrac{1}{(1-x)f(x)}=\dfrac{(x^2+1)(x^8+1)(x^{32}+1)(x^{128}+1)}{1-x^{512}}$, unfortunately all of these did not help to shed any insight for me to proceed.

Good afternoon,

I don't know if this could be a step into the right direction, but you can factor the denominator into a lot of factors:

$$1-x^{512} = (x + 1)(1 - x)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^{16} + 1)(x^{32} + 1)(x^{64} + 1)(x^{128} + 1)(x^{256} + 1)$$

Now cancel as much factors as possible.
 
earboth said:
Good afternoon,

I don't know if this could be a step into the right direction, but you can factor the denominator into a lot of factors:

$$1-x^{512} = (x + 1)(1 - x)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^{16} + 1)(x^{32} + 1)(x^{64} + 1)(x^{128} + 1)(x^{256} + 1)$$

Now cancel as much factors as possible.

Hi earboth!

Thank you for the reply...but even after cancelling out the common factors, I could not see what I could do further to evaluate target expression...:(

$\dfrac{1}{(1-x)f(x)}=\dfrac{1}{(x^2-1)(x^4+1)(x^{16}+1)(x^{64}+1)(x^{256}+1)}$
 
Someone from France, an expert of solving Olympiad Mathematics problems has offered me a great insight which I thought to share it with members at MHB. But I have to say it out loud here that his approach led to the approximate but not exact value of $f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right)$.

He mentioned about since $f(x)=(x^{256}+1)(x^{64}+1)(x^{16}+1)(x^{4}+1)(x+1)$, then we have $f(x^2)=(x^{512}+1)(x^{128}+1)(x^{32}+1)(x^{8}+1)(x^2+1)$ and note that

$$(x+1)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^{16} + 1)(x^{32} + 1)(x^{64} + 1)(x^{128} + 1)(x^{256} + 1)(x^{512}+1)=\dfrac{(x^{2014}+1)}{(x-1)}$$

We then obtained $f(x)f(x^2)=\dfrac{(x^{2014}-1)}{(x-1)}=\dfrac{(1-x^{2014})}{(1-x)}$.

At $x=\dfrac{3}{8}$, $f\left(\dfrac{3}{8}\right)f\left(\dfrac{3}{8}\right)^2=\dfrac{1-\left(\dfrac{3}{8}\right)^{2014}}{1-\left(\dfrac{3}{8}\right)}\approx \dfrac{8}{5}$.

Therefore, $f\left(\dfrac{3}{8}\right)^2\approx \dfrac{8}{5f\left(\dfrac{3}{8}\right)}$ and hence $f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right)\approx \dfrac{9}{64}$.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K