Evaluate Inverse of Hi M.H.B.: Math Problem

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary
SUMMARY

The discussion revolves around evaluating the inverse of the function \( f(x)=(x^{256}+1)(x^{64}+1)(x^{16}+1)(x^{4}+1)(x+1) \) for \( 0 PREREQUISITES

  • Understanding of polynomial functions and their properties
  • Familiarity with inverse functions and their evaluation
  • Knowledge of algebraic manipulation techniques
  • Experience with Olympiad-level mathematics problems
NEXT STEPS
  • Study the properties of polynomial functions, specifically \( f(x)=(x^{256}+1)(x^{64}+1)(x^{16}+1)(x^{4}+1)(x+1) \)
  • Learn about the method of evaluating inverse functions in complex algebraic contexts
  • Explore advanced factoring techniques for polynomials, particularly in the context of Olympiad problems
  • Investigate the implications of the relationship \( f(x)f(x^2)=\dfrac{(x^{2014}-1)}{(x-1)} \)
USEFUL FOR

Mathematics enthusiasts, Olympiad competitors, and educators seeking to deepen their understanding of polynomial functions and inverse evaluations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

The following problem has been a really vexing problem (for me) because I believe there would be a tricky way of approaching it but I could not solve it after working with it on and off for two days, it is an Olympiad math competition problem, and so far no one that I know of has solved it.

I think the time has come to ask for help at MHB. If anyone has ideas to solve it, I would appreciate the help.

Problem:

Let $f(x)=(x^{256}+1)(x^{64}+1)(x^{16}+1)(x^{4}+1)(x+1)$ for $0<x<1$.

Evaluate $f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right)$.

My futile attempt is based on the core concept of utilizing the formula $f^{-1}(f(x))=x$ where I got

$f(x)=\dfrac{x^{512}-1}{(x-1)(x^2+1)(x^8+1)(x^{32}+1)(x^{128}+1)}$ that leads to $\dfrac{1}{(1-x)f(x)}=\dfrac{(x^2+1)(x^8+1)(x^{32}+1)(x^{128}+1)}{1-x^{512}}$, unfortunately all of these did not help to shed any insight for me to proceed.
 
Mathematics news on Phys.org
anemone said:
...that leads to $\dfrac{1}{(1-x)f(x)}=\dfrac{(x^2+1)(x^8+1)(x^{32}+1)(x^{128}+1)}{1-x^{512}}$, unfortunately all of these did not help to shed any insight for me to proceed.

Good afternoon,

I don't know if this could be a step into the right direction, but you can factor the denominator into a lot of factors:

$$1-x^{512} = (x + 1)(1 - x)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^{16} + 1)(x^{32} + 1)(x^{64} + 1)(x^{128} + 1)(x^{256} + 1)$$

Now cancel as much factors as possible.
 
earboth said:
Good afternoon,

I don't know if this could be a step into the right direction, but you can factor the denominator into a lot of factors:

$$1-x^{512} = (x + 1)(1 - x)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^{16} + 1)(x^{32} + 1)(x^{64} + 1)(x^{128} + 1)(x^{256} + 1)$$

Now cancel as much factors as possible.

Hi earboth!

Thank you for the reply...but even after cancelling out the common factors, I could not see what I could do further to evaluate target expression...:(

$\dfrac{1}{(1-x)f(x)}=\dfrac{1}{(x^2-1)(x^4+1)(x^{16}+1)(x^{64}+1)(x^{256}+1)}$
 
Someone from France, an expert of solving Olympiad Mathematics problems has offered me a great insight which I thought to share it with members at MHB. But I have to say it out loud here that his approach led to the approximate but not exact value of $f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right)$.

He mentioned about since $f(x)=(x^{256}+1)(x^{64}+1)(x^{16}+1)(x^{4}+1)(x+1)$, then we have $f(x^2)=(x^{512}+1)(x^{128}+1)(x^{32}+1)(x^{8}+1)(x^2+1)$ and note that

$$(x+1)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^{16} + 1)(x^{32} + 1)(x^{64} + 1)(x^{128} + 1)(x^{256} + 1)(x^{512}+1)=\dfrac{(x^{2014}+1)}{(x-1)}$$

We then obtained $f(x)f(x^2)=\dfrac{(x^{2014}-1)}{(x-1)}=\dfrac{(1-x^{2014})}{(1-x)}$.

At $x=\dfrac{3}{8}$, $f\left(\dfrac{3}{8}\right)f\left(\dfrac{3}{8}\right)^2=\dfrac{1-\left(\dfrac{3}{8}\right)^{2014}}{1-\left(\dfrac{3}{8}\right)}\approx \dfrac{8}{5}$.

Therefore, $f\left(\dfrac{3}{8}\right)^2\approx \dfrac{8}{5f\left(\dfrac{3}{8}\right)}$ and hence $f^{-1}\left(\dfrac{8}{5f\left(\dfrac{3}{8}\right)}\right)\approx \dfrac{9}{64}$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K