Evaluate Limit: 7lim... (n^2 + n + 1) / (n^3 + 2n^2 +n)

  • Thread starter Thread starter naspek
  • Start date Start date
  • Tags Tags
    Limit
naspek
Messages
176
Reaction score
0

Homework Statement



lim... (1 + 1/n^2)(7/n+1)
n->infinity




The Attempt at a Solution



lim... (1 + 1/n^2)(7/n+1)
n->infinity

= (7/n + 1) + (7/n^3 + n^2)

bring out 7 because constant..

7lim... (1/n + 1) + (1/n^3 + n^2)
n->infinity
.
.
.
.
.
7lim... (n^2 + n + 1) / (n^3 + 2n^2 +n)
n->infinity


limit does not exist.. am i correct?
 
Physics news on Phys.org
Before you try to mathematically rearrange anything, try imagining what happens to (1+(1/n^2)) as n approaches infinity. Then do the same with (7/(n+1)). What do you see?
 
naspek said:

Homework Statement



lim... (1 + 1/n^2)(7/n+1)
n->infinity




The Attempt at a Solution



lim... (1 + 1/n^2)(7/n+1)
n->infinity

= (7/n + 1) + (7/n^3 + n^2)

bring out 7 because constant..

7lim... (1/n + 1) + (1/n^3 + n^2)
n->infinity
.
.
.
.
.
7lim... (n^2 + n + 1) / (n^3 + 2n^2 +n)
n->infinity


limit does not exist.. am i correct?
No. Don't multiply the two factors. Each one has a limit that is readily obtainable. As n gets large without bound, what happens to 1/n2? What happens to 1 + 1/n2? What happens to 7/n? What happens to 7/n + 1?

The limit does exist.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top