philippe311
- 15
- 0
Homework Statement
use lim as x__>0 (sin(x))/(x) to evaluate the following : lim (x^(2) cot(x) + sin(x/2) - cos(x) + 1)/(x) as x__>0
The Attempt at a Solution
1- lim as x__>0 (x^(2) cot(x))/ (x)= x cotx = x (cosx)/(sinx)= (x/sinx) cosx = 1.1=1
And I think I can use L'Hospital's Rule to evaluate the previous one, right?
2- lim as x__>0 (sin(x/2))/(x)= 1/2 (sin(x/2))/(x/2)= 1/2.
3. this is where it gets hard. I tried to use L'Hospital's Rule, but I just want to see if that makes sense or not. lim as x__>0 (-cosx +1)/(x)= 0/0. using L'H, I will get lim as x__>0 sinx= 0 . so my final answer will be 1+1/2+-0= 1.5. Is this right?