- 42,775
- 10,484
No-one seems to like my approach, but I shall persist anyway.:shy:
##I_1 = \int_{r=0}^\infty f(r).dr##
##I_2 = \lim_{R→\infty} \int_{\theta=0}^{2\pi/3} f(R e^{i\theta}).dR e^{i\theta} = 0##
##I_3 = \int_{r=\infty}^0 f(r e^{2\pi i/3}).d(r e^{2\pi i/3}) = \int_{r=\infty}^0 \frac{(r e^{2\pi i/3})^{\frac 1 2}}{1+(r e^{2\pi i/3})^3}e^{2\pi i/3}.dr= -\int_{r=0}^\infty \frac{\sqrt r e^{\pi i/3}e^{2\pi i/3}}{1+r^3}.dr = \int_{r=0}^\infty \frac{\sqrt r }{1+r^3}.dr = I_1##
Since the residue at the only pole inside the contour is -i/3, 2 I1 = I1+I2 + I3 = 2πi * (-i/3), so I1 = π/3.
##I_1 = \int_{r=0}^\infty f(r).dr##
##I_2 = \lim_{R→\infty} \int_{\theta=0}^{2\pi/3} f(R e^{i\theta}).dR e^{i\theta} = 0##
##I_3 = \int_{r=\infty}^0 f(r e^{2\pi i/3}).d(r e^{2\pi i/3}) = \int_{r=\infty}^0 \frac{(r e^{2\pi i/3})^{\frac 1 2}}{1+(r e^{2\pi i/3})^3}e^{2\pi i/3}.dr= -\int_{r=0}^\infty \frac{\sqrt r e^{\pi i/3}e^{2\pi i/3}}{1+r^3}.dr = \int_{r=0}^\infty \frac{\sqrt r }{1+r^3}.dr = I_1##
Since the residue at the only pole inside the contour is -i/3, 2 I1 = I1+I2 + I3 = 2πi * (-i/3), so I1 = π/3.