MHB Evaluating Limit Using L'Hospitals Rule $\tiny{205.q4.1}$

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The limit evaluation using L'Hôpital's Rule for the expression lim as x approaches 1 of (11x + 11sec(πx))/(4x - 4x²) results in an indeterminate form of 0/0. After applying L'Hôpital's Rule, the derivatives yield a limit of -11/4. An alternative approach is suggested, breaking the limit into simpler components before applying L'Hôpital's Rule again. The discussion emphasizes clarity in notation and presentation to avoid confusion. The final result confirms that the limit is indeed -11/4.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{205.q4.1}\\$
$\textsf{Evaluate the limit using L'Hospitals Rule }$
\begin{align}
\displaystyle
L_{q4}&=\lim_{{x}\to{1}} \frac{11x+11\sec(\pi x)}{4x-4{x}^{2}}
&L'H=\frac{f'}{g'}&= \frac{11+11\pi\sec(\pi x)\tan(\pi x)}{4-8x}
\\
&=\frac{11(1)+11\sec(\pi (1))}{4(1)+4(1)^2}
&&=\frac{11+11\pi\sec(\pi )\tan(\pi)}{4-8}
\\
&=\frac{11-11}{4-4}
&&=\frac{11+0}{-4}
\\
&=\frac{0}{0}
&&=-\frac{11}{4}
\end{align}
$\textsf{think this is ok, but sugestions??}$
 
Physics news on Phys.org
What you did is fine, you could also write:

$$L=\lim_{x\to1}\left(\frac{11x+11\sec(\pi x)}{4x-4x^2}\right)=\frac{11}{4}\lim_{x\to1}\left(\frac{1}{x}\cdot\frac{x+\sec(\pi x}{1-x}\right)=\frac{11}{4}\lim_{x\to1}\left(\frac{1}{x}\right)\cdot\lim_{x\to1}\left(\frac{x+\sec(\pi x)}{1-x}\right)=\frac{11}{4}\lim_{x\to1}\left(\frac{x+\sec(\pi x)}{1-x}\right)$$

Now apply L'Hôpital's Rule:

$$L=\frac{11}{4}\lim_{x\to1}\left(\frac{1+\pi\sec(\pi x)\tan(\pi x)}{-1}\right)=-\frac{11}{4}\left(\frac{1+0}{1}\right)=-\frac{11}{4}$$
 
MarkFL said:
What you did is fine, you could also write:

$$L=\lim_{x\to1}\left(\frac{11x+11\sec(\pi x)}{4x-4x^2}\right)=\frac{11}{4}\lim_{x\to1}\left(\frac{1}{x}\cdot\frac{x+\sec(\pi x}{1-x}\right)=\frac{11}{4}\lim_{x\to1}\left(\frac{1}{x}\right)\cdot\lim_{x\to1}\left(\frac{x+\sec(\pi x)}{1-x}\right)=\frac{11}{4}\lim_{x\to1}\left(\frac{x+\sec(\pi x)}{1-x}\right)$$
That first line screwed me up a bit! (Sweating) I didn't realize it went over to the next line.

-Dan
 
always love the simlified version☕