Evaluating the Complex Limit: Proving Existence and Value

  • Thread starter Thread starter ehrenfest
  • Start date Start date
  • Tags Tags
    Complex Limit
ehrenfest
Messages
2,001
Reaction score
1
[SOLVED] complex limit

Homework Statement


Evaluate the complex limit if it exists:

\lim_{z \to 1} \frac{\log{z}}{z-1}

where log denotes the principal branch of the logarithm.

Homework Equations


The Attempt at a Solution


I am pretty sure it exists and equals 1, because that is what it equals when I approach with specific sequences. But how can I prove that?
 
Physics news on Phys.org
\lim_{z \to 1} \frac{\log{z}}{z-1} = \lim_{z\to 0} \frac{\log (1+z)}{z}.

Are you allowed to use the property that the series for that log term converges to that log term iff |z| < 1?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top