Evaluation of Feynman propagator in position space

spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement



Compute ##\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{p^{2}-m^{2}+i\epsilon}e^{-ip \cdot{(x-y)}}## in terms of the invariant interval.

Interpret your answer in the limit of small and large invariant intervals and for zero mass.

Homework Equations



The Attempt at a Solution



##\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{p^{2}-m^{2}+i\epsilon}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0})^{2}-(E_{\vec{p}})^{2}+i\epsilon}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0})^{2}-(E_{\vec{p}}-i\epsilon)^{2}}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-(E_{\vec{p}}-i\epsilon))(p^{0}+(E_{\vec{p}}-i\epsilon))}e^{-ip \cdot{(x-y)}}##

Therefore, the contour prescription ##i\epsilon## reminds us to integrate under the pole at ##p^{0}=-E_{\vec{p}}## and over the pole at ##p^{0}=E_{\vec{p}}##. So, let's now drop the ##i\epsilon## term and obtain

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##

For ##x^{0}>y^{0}##, we close the contour below (clockwise sense introduces a negative factor) and for ##x^{0}<y^{0}##, we close the contour above (anti-clockwise sense introduces a positive factor), so that

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \theta(x^{0}-y^{0})\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})} +\theta(y^{0}-x^{0})\frac{1}{-2E_{\vec{p}}}e^{iE_{\vec{p}}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##

Am I correct so far?
 
Physics news on Phys.org
failexam said:
##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{-ip^{i}(x_{i}-y_{i})}##
There's probably a sign problem here (unless you have somehow absorbed it into the indices) - the temporal and spatial portions of your dot product should have different signs.
 
Well,

##-ip\cdot{(x-y)}=-i[p^{\mu}(x-y)_{\mu}]=-i[p^{0}(x-y)_{0}+p^{i}(x-y)_{i}]##

Now, using the mostly negative signature,

##-i[p^{0}(x-y)_{0}+p^{i}(x-y)_{i}]=-i[p^{0}(x-y)^{0}+p^{i}(x-y)_{i}]=-ip^{0}(x-y)^{0}-ip^{i}(x-y)_{i}]##.

Right?
 
Ah okay, it's somewhat confusing but your negative signs are buried within the subscripts - so in that case, I think whatever you've done seems correct. I think though that its generally cleaner to switch to three-vector notation i.e. ##p \cdot x = E_{\vec{p}} t - \vec{p} \cdot \vec{x}##
 
Ok, so

##=\displaystyle{\int\ \frac{d^{4}p}{(2\pi)^{4}}} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip \cdot{(x-y)}}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{i\vec{p}(\vec{x}-\vec{y})}##

For ##x^{0}>y^{0}##, we close the contour below (clockwise sense introduces a negative factor) and for ##x^{0}<y^{0}##, we close the contour above (anti-clockwise sense introduces a positive factor), so that

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \int\ \frac{dp^{0}}{2\pi} \frac{i}{(p^{0}-E_{\vec{p}})(p^{0}+E_{\vec{p}})}e^{-ip^{0}(x^{0}-y^{0})} \bigg]\ e^{i\vec{p}(\vec{x}-\vec{y})}##

##=\displaystyle{\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[ \theta(x^{0}-y^{0})\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})} +\theta(y^{0}-x^{0})\frac{1}{2E_{\vec{p}}}e^{iE_{\vec{p}}(x^{0}-y^{0})} \bigg]\ e^{i\vec{p}(\vec{x}-\vec{y})}##

##=\displaystyle{\theta(x^{0}-y^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})}e^{i\vec{p}(\vec{x}-\vec{y})} \bigg]+\theta(y^{0}-x^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{iE_{\vec{p}}(x^{0}-y^{0})} e^{i\vec{p}(\vec{x}-\vec{y})}\bigg]##

The first term gives ##=\displaystyle{\theta(x^{0}-y^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{-iE_{\vec{p}}(x^{0}-y^{0})}e^{i\vec{p}(\vec{x}-\vec{y})} \bigg]=\displaystyle{\theta(x^{0}-y^{0})\int\ \frac{d^{3}p}{(2\pi)^{3}}}\ \bigg[\frac{1}{2E_{\vec{p}}}e^{-ip\cdot{(x-y)}} \bigg]\bigg|_{p^{0}=E_{\vec{p}}}=D(x-y)##.

How do I convert the second term to ##-D(y-x)##?
 
I think it should be just ##D(y-x)## and not ##-D(y-x)##. The trick is to flip the sign of ##\vec{p}##, which is a valid operation because we are integrating over the entire ##p##-volume, and all other quantities only depend on the magnitude of ##\vec{p}##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top