Is the Expectation Value of x Zero for an Even Potential Energy Function?

FourierX
Messages
73
Reaction score
0

Homework Statement



Its a problem from a foreign book. It sounded simple to me but I am confused now.


If V(x), a potential energy function, is known to be an even function, what can you say about wave function for any stationary state? What shall be the expectation value of x for any stationary state ?

Homework Equations





The Attempt at a Solution



I grabbed a book by Griffith from my library and figured that if V(x) is even, the time independent wave function can be taken to be either even or odd. I know that expectation value of x for a stationary state has to be 0. But can some help me see this with the standpoint of V(x) being even ?


thanks in advance
 
Physics news on Phys.org
V(x) is even, so it is symmetric around the origin

the solutions to TISE will be either symmetric or anti-symmetric around the origin

note if \psi is a solution, so will e^{i \phi}\psi for any phi, ie the solution is only unique upto an overall phase

so in the anti-symmetric solution, there is no meaning in one side being negtive and teh other positive positive, as it is equivalent to any solution with phase shifted by phi. the only point is that they are out of phase by p.

when you look at the probabilty distribution given by
P(r)dr = \psi \psi*
the overall phase cancels and P(r)dr will be a non-negative symmetric function, thus the expectation position will be zero
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top