MHB Every Cauchy sequence converges

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Cauchy Sequence
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Wave)

Sentence:

The p-adic numbers are complete with respect to the p-norm, ie every Cauchy sequence converges.

Proof:

Let $(x_i)_{i \in \mathbb{N}}$ a Cauchy-sequence in $\mathbb{Q}_p$.

We want to show that, without loss of generality, we can suppose that $x_i \in \mathbb{Z}_p$.Let the set $\{ |x_i|_p | i \in \mathbb{N}\} \subset \mathbb{R}$. We suppose that it is upper bounded. If not, there are $\forall m \in \mathbb{N}$ and $N \in \mathbb{N}$ two indices $i,j \geq N$ with $|x_i|_p> |x_j|_p \geq p^m$.

From the sentence: For $|x|_p \neq |y|_p$, it stands that $|x+y|_p=\max \{|x|_p, |y|_p \} $, we have that $|x_i-x_j|_p=|x_i|_p>p^m$. This is not possible for a Cauchy-sequence.

Now, we pick $m \in \mathbb{N}$ with $p^m \geq \max \{ |x_i|_p | i \in \mathbb{N}_0 \}$. Then, $(p^m x_i)_i$ is a Cauchy-sequence with $|p^mx_i|_p \leq 1 \Rightarrow p^mx_i \in \mathbb{Z}_p$. It converges exactly then, when $(x_i)_i$ converges.So, we just need to consider a Cauchy-sequence $(x_i)_i \in \mathbb{Z}_p$. We want to show that it converges and to determine its limit $z \in \mathbb{Z}_p$. For each $k \in \mathbb{N}$, we pick a $N_k \in \mathbb{N}$, so that:

$$|x_i-x_j|_p<p^{-k} ,\text{ for } i,j \geq N_k$$

We can suppose, that $N_k$ is an increasing sequence.The above inequality is equivalent to $v_p(x_i-x_j)>k$ or $x_i-x_j \in p^{k+1} \mathbb{Z}_p$. So, we find a $z_k \in \mathbb{Z}$, such that:

$$z_k \equiv x_i \equiv x_i \mod p^{k+1}\mathbb{Z}_p, \text{ for } i,j \geq N_k$$

Because of $N_{k+1} \geq N_k$, it stands that:
$$z_{k+1} \equiv x_{N_{k+1}} \equiv x_{N_k} \equiv z_k \mod p^{k+1} \mathbb{Z}_p$$

ie. $z=(\overline{z_k})_k \in \Pi \mathbb{Z}/p^{k+1}\mathbb{Z}$ is an element from $\mathbb{Z}_p$. Also, for $i \geq N_k$, it stands that:
$$x_i \equiv z_k \equiv \ \mod p^{k+1}\mathbb{Z}_p \Rightarrow |x_i-z|_p<p^{-p}$$

so $x_i$ converges to $z$.
Could you explain me step by step the above proof?
 
Mathematics news on Phys.org
Here is an easier proof that minimizes the use of $\varepsilon$'s . First define $X_n = \mathbb{Z}/p^n \mathbb{Z}$, and give these finite sets the discrete topology. The $p$-adic integers are the projective limit of the $X_n$.

Now consider the product,
$$ X = \prod_{n=1}^{\infty} X_n $$
This is a compact space because each $X_n$ is compact. Furthermore, $\mathbb{Z}_p$ is a closed subset of $X$. Thus, $\mathbb{Z}_p$ is a compact space.

This means that if you can find a metric which describes the topology on $\mathbb{Z}_p$ the metric must automatically be complete (since compact metric spaces are complete). You have to show, which is not so difficult, that the $p$-metric induces the same topology as $\mathbb{Z}_p$ inherits from being a subspace of $X$.

This will prove that $\mathbb{Z}_p$ is complete with respect to the $p$-adic metric. To show that $\mathbb{Q}_p$ is complete you "defractionize" it.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
570
Replies
1
Views
2K
Replies
1
Views
2K
Replies
7
Views
3K
Replies
1
Views
2K
Replies
1
Views
2K
Back
Top