Everything has ferromagnetic properties (?)

AI Thread Summary
Not all materials exhibit ferromagnetic properties; some can be weakly attracted or repelled by a magnetic field. Magnetic susceptibility is the key measure to understand how materials respond to magnetism, with classifications like paramagnetic (weak attraction) and diamagnetic (weak repulsion). Copper, for example, is classified as diamagnetic and would be repelled by a strong magnetic field. The strength of the magnetic field required to significantly interact with materials like copper is complex and likely exceeds practical production capabilities. Overall, the interaction of materials with magnetic fields varies widely based on their magnetic properties.
SAZAR
Messages
200
Reaction score
0
Is it true that every material can be attracted by a magnetic field provided that the magnetic field is STRONG enough?
 
Physics news on Phys.org
Actually I was asking about a table that describes how magnetic the material is in numbers. (how is it called? 'coefficient of magnetism'?? or what?)

Something like:
sulfur | 0.0000000000145
phosphorus | 0.0000000346
and so on :D
 
Try magnetic susceptibility. This is the quantity that may be what you need, for materials with weak magnetism:
- paramagnetic - weakly attracted by a strong magnet
- diamagnetic - weakly repelled

For ferromagnetic materials the susceptibility or permeability may give some information.

So no, not any material is attracted. It may be repelled.
And when is weakly attracted does not mean it is ferromagnetic.
 
nasu said:
Try magnetic susceptibility. This is the quantity that may be what you need, for materials with weak magnetism:
- paramagnetic - weakly attracted by a strong magnet
- diamagnetic - weakly repelled

For ferromagnetic materials the susceptibility or permeability may give some information.

So no, not any material is attracted. It may be repelled.
And when is weakly attracted does not mean it is ferromagnetic.

Hmmm... As an extreme example: copper is an element known as a great magnetic "insulator", but if a strong enough magnetic field would be applied - would it be repelled or attracted?
(And how strong a magnetic field must be in order to affect it just as strong as two magnets interact? (e.g. for comparison: how much times stronger than neodymium magnet?))

PS: Actually now that I checked it out I see that copper is diamagnetc (it would be repelled - right?) - so only that other question remains: how strong a magnetic field must be to interact with it as strong as two magnets would?
 
Last edited:
This is a very vague question. Even for a more specific one (given the expected force, the size and shape of material) it would be nontrivial.
My guess though is that it will be higher than anything you can reasonably produce, at least for copper. Besides, the force on a induced dipole depends on both field strength and gradient of the field.

Note. Copper is not really a magnetic insulator. A static magnetic field will go through it. Try to put a sheet of copper between two magnets. The main effect in reducing attraction will be the increase in separation due to the thickness of the copper.
A copper sheet or box may provide good insulation against variable electromagnetic fields and/or static electric fields.
 
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top