Synctime said:
I would like to know if there are exact solutions using General Relativity to determine: 1) time dilation from velocity, and 2) velocity from redshift (arising from kinematic movement). I understand that Special Relativity can handle both of these questions, but the implementation of SR is limited to certain situations. Schwartzschild presented an exact solution for GR to calculate time dilation in response to gravity, and I'm wondering if there is a similar exact solution to these questions.
Confirmation that there are no exact solutions for GR with these questions would also be very helpful.
Welcome to Physics Forums!
These questions have nothing to do with the issue of exact solutions. The differences on these between SR and GR have to do with GR including gravitational and cosmological effects, which imply dynamic and curved spacetime.
Even in SR, I sense some confusion in your questions. Time dilation is a function of velocity in some chosen inertial reference frame. It is thus a frame dependent, derived, quantity that is not directly observable. What is observable and frame independent are things like doppler and differential time passage for specific 'clocks' that compare time a specific way (e.g. separate and get back together; or exchange signals in some specified way). These observables are frame independent. The interpretation into who is dilated how much varies by frame, but always leads to the same observable quantities.
Velocity, even in SR, is determined by doppler only given more information e.g. the specification that motion is either directly towards or away from the receiver (that is, source velocity is colinear with light path). Otherwise, you obviously need additional information to relate doppler to relative speed.
In GR, a fundamental difference is that relative velocity at a distance has no unique definition at all. This has nothing to do with exact vs. inexact solution, it is a direct consequence of curvature. If you want to compare two vectors (e.g. velocity vectors), you have to move one to the other. In flat spacetime, you can do this in a unique, direction preserving manner, the result being independent of the path you move them on. In curved spacetime, the answer is potentially different for every possible path you use to bring the vectors together. There is no 'solution' to this problem - this feature is the definition of curvature. Thus, in GR, relative velocity is strictly a coordinate dependent, purely conventional quantity (unlike SR, where
relative velocity between to world lines at two specified events is frame independent).
Be that as it may, direct observables like doppler and differential time flow (using a specified physical procedure) are perfectly computable in GR, for any solution. Further, if you pick a particular coordinate system (e.g. cosmological comoving coordinates), coordinate velocity can be related Doppler in the same manner as for SR, except that you may need more information. For example, to factor an observed doppler for an object moving colinear with its light path as you observer it, into cosmological and peculiar velocity, you would need to somehow know its distance, or know of equidistant, nearby objects which you know are comoving with the CMB. But this is just a deficiency of knowledge, not a deficiency in what is computable in GR.
Please continue asking questions for further clarification.