Expect Momentum Problem 1.17 Griffiths: Find Expected Value & Uncertainty

  • Thread starter Thread starter matpo39
  • Start date Start date
  • Tags Tags
    Expectation
matpo39
Messages
40
Reaction score
0
Problem 1.17 in griffiths gives, at time t = 0, the state psi =A(a^2-x^2) for -a to a, and 0 otherwise. It asks then to find the expected value of momentum p at 0 and also the uncertainty in p. How do I do this? The only way momentum is defined is md<x>/dt, and since the state is only for time t, there seems to be no way to do this.

thanks
 
Physics news on Phys.org
To determine the expectation value of the momentum you may use
\langle p \rangle = m\frac{d}{dt} \langle x \rangle
or
\langle p \rangle = \langle \Psi \mid p \mid \Psi \rangle
Note that these two are equivalent statements. In either case, when doing the integrals, notice that you always obtain an odd integrand over over symmetric limits about the origin, what does that mean? Can you guess the solution from the initial problem statement. Give it a try.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top