Expectation Values of Spin Operators

Rahmuss
Messages
222
Reaction score
0
[SOLVED] Expectation Values of Spin Operators

Homework Statement


b) Find the expectation values of S_{x}, S_{y}, and S_{z}


Homework Equations


From part a)
X = A \begin{pmatrix}3i \\ 4 \end{pmatrix}

Which was found to be: A = \frac{1}{5}

S_{x} = \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}

S_{y} = \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}

S_{z} = \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}

The Attempt at a Solution


I have it setup as:

\left\langle S_{x}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{x}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2}\begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{-12i}{25} + \frac{12i}{25} \right] \Rightarrow 0

\left\langle S_{y}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{y}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2} \begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \begin{pmatrix}\frac{4i}{5} \\ \frac{-3}{5} \end{pmatrix} \frac{\hbar}{2} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{12i}{25} - \frac{12i}{25} \right] \Rightarrow 0

\left\langle S_{z}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{z}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2} \begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{-4}{5} \end{pmatrix} \frac{\hbar}{2} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{9}{25} - \frac{16}{25} \right] \Rightarrow \frac{-7\hbar^{2}}{100}

The first two seem like they're fine; but the last one doesn't seem right. Now if it was:

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{9}{25} + \frac{16}{25} \right] \Rightarrow \frac{\hbar^{2}}{4}

Then that would at least seem to be in the right direction. So what am I missing?
 
Physics news on Phys.org
Where do you get your second factor of \hbar /2 from? Also, you need to throw away the integrals and write the bra as a row vector (not a column vector).
 
Oh, you're right, it's just S_{x}, not S_{x}^{2}. Thanks. And I'll change the vectors (on my homework); but is the rest correct then?
 
Yes, but there are no integrals involved when you use matrices.
 


how is the wave function defined?
also don't confuse with matrices and integrals
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top