Expectation Values of Spin Operators

Click For Summary
SUMMARY

The discussion focuses on calculating the expectation values of the spin operators S_{x}, S_{y}, and S_{z} using the state vector X = A \begin{pmatrix}3i \\ 4 \end{pmatrix}, where A = \frac{1}{5}. The operators are defined as S_{x} = \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}, S_{y} = \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}, and S_{z} = \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}. The calculations yield \left\langle S_{x}\right\rangle = 0, \left\langle S_{y}\right\rangle = 0, and \left\langle S_{z}\right\rangle = \frac{-7\hbar^{2}}{100}. The discussion highlights the importance of correctly applying matrix operations without integrals when evaluating these expectation values.

PREREQUISITES
  • Understanding of quantum mechanics, specifically spin operators.
  • Familiarity with matrix algebra and vector notation.
  • Knowledge of expectation values in quantum mechanics.
  • Basic grasp of the Dirac notation and bra-ket formalism.
NEXT STEPS
  • Study the derivation of expectation values in quantum mechanics.
  • Learn about the properties and applications of spin operators in quantum systems.
  • Explore the implications of the Pauli matrices in quantum mechanics.
  • Investigate the role of normalization in quantum state vectors.
USEFUL FOR

Students and researchers in quantum mechanics, particularly those focusing on spin systems and expectation value calculations. This discussion is beneficial for anyone looking to deepen their understanding of quantum operators and their applications.

Rahmuss
Messages
222
Reaction score
0
[SOLVED] Expectation Values of Spin Operators

Homework Statement


b) Find the expectation values of S_{x}, S_{y}, and S_{z}


Homework Equations


From part a)
X = A \begin{pmatrix}3i \\ 4 \end{pmatrix}

Which was found to be: A = \frac{1}{5}

S_{x} = \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}

S_{y} = \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}

S_{z} = \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}

The Attempt at a Solution


I have it setup as:

\left\langle S_{x}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{x}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2}\begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{-12i}{25} + \frac{12i}{25} \right] \Rightarrow 0

\left\langle S_{y}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{y}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2} \begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \begin{pmatrix}\frac{4i}{5} \\ \frac{-3}{5} \end{pmatrix} \frac{\hbar}{2} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{12i}{25} - \frac{12i}{25} \right] \Rightarrow 0

\left\langle S_{z}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{z}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2} \begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{-4}{5} \end{pmatrix} \frac{\hbar}{2} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{9}{25} - \frac{16}{25} \right] \Rightarrow \frac{-7\hbar^{2}}{100}

The first two seem like they're fine; but the last one doesn't seem right. Now if it was:

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{9}{25} + \frac{16}{25} \right] \Rightarrow \frac{\hbar^{2}}{4}

Then that would at least seem to be in the right direction. So what am I missing?
 
Physics news on Phys.org
Where do you get your second factor of \hbar /2 from? Also, you need to throw away the integrals and write the bra as a row vector (not a column vector).
 
Oh, you're right, it's just S_{x}, not S_{x}^{2}. Thanks. And I'll change the vectors (on my homework); but is the rest correct then?
 
Yes, but there are no integrals involved when you use matrices.
 


how is the wave function defined?
also don't confuse with matrices and integrals
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K