MHB Expected value of a continuous random variable

AI Thread Summary
To find the expected value E(x) of the given piecewise probability density function (PDF), the integral is divided into two parts corresponding to the intervals. The first integral is calculated from 0 to 3 with the PDF f(x) = 1/12, and the second from 3 to 6 with f(x) = x/18. The expected value is computed as E{X} = (1/12) * ∫(0 to 3) x dx + (1/18) * ∫(3 to 6) x² dx. A user acknowledges a potential calculation error after attempting the integration. Accurate calculations are essential for determining the expected value correctly.
rayne1
Messages
32
Reaction score
0
Given the PDF:

f(x) = 1/12 , 0 < x <= 3
x/18, 3 < x <= 6
0, otherwise

find the expected value, E(x).

I know how to find the expected value if there was only one interval, but don't how to do it for two.
 
Physics news on Phys.org
rayne said:
Given the PDF:

f(x) = 1/12 , 0 < x <= 3
x/18, 3 < x <= 6
0, otherwise

find the expected value, E(x).

I know how to find the expected value if there was only one interval, but don't how to do it for two.

The integral can be devided in two integrals as follows...

$\displaystyle E \{X \} = \frac{1}{12}\ \int_{0}^{3} x\ d x + \frac{1}{18}\ \int_{3}^{6} x^{2}\ dx\ (1)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
The integral can be devided in two integrals as follows...

$\displaystyle E \{X \} = \frac{1}{12}\ \int_{0}^{3} x\ d x + \frac{1}{18}\ \int_{3}^{6} x^{2}\ dx\ (1)$

Kind regards

$\chi$ $\sigma$

Oh I did try that, so then I must have made a calculation error.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Back
Top