Explain p.d.f. of the sum of random variables

exoCHA
Messages
2
Reaction score
0
Hi,
I need your help,
Say we have two random variables with some joint pdf f(x,y). How would I go about finding the pdf of their sum?
 
Physics news on Phys.org
If the two random variables are dependent there is no easy solution. (I tried Google!)
 
I think I found the answer: google docs... page 10

another question, if I end up with an integral like that and a constant inside, then does the pdf of the two variables diverges and there's no answer?
 
Hey exoCHA.

The PDF won't diverge if it's a valid PDF.

The PDF however may not give finite moments but that is a completely different story. Your PDF should be a valid PDF if you did everything right and it should contain a region that has finite realizations of Z if the domain of your X and Y in your joint PDF are also finite for something like Z = X + Y.

Remember that even a Normal distribution is valid for the entire real line just like the Z will also be valid across the entire real line.
 
Another way to find the pdf would be to calculate the joint characteristic function

$$\Gamma(\mu_x,\mu_y) = \langle e^{i\mu_x x + i\mu_y y} \rangle = \int_{-\infty}^\infty dx \int_{-\infty}^\infty dy~\rho(x,y) e^{i\mu_x x + i\mu_y y}.$$

One can recover the joint pdf by inverse transforming in the two different mu's, but you can also find the pdf of their sum by setting both ##\mu_x=\mu_y = \mu## and inverse Fourier transforming in ##\mu##:

$$\rho_Z(z) = \int_{-\infty}^\infty \frac{d\mu}{2\pi} \Gamma(\mu,\mu)e^{-i\mu z},$$
where z = x + y. (Whether or not this integral is easy to do is of course a separate issue).
 
If you have a density function f(x,y), then the probability that X+Y < z can be expressed as a double integral,
∫∫f(x,y)dxdy where the integral range is given by x+y < z. This can be evaluated by u=x+y replacing x, so du = dx. The double integral now has y range (-∞,∞) and u range (-∞,z) and g(u,y) = f(u-y,y) as the integrand.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top