A Explicit non-holonomic equations of motion

AI Thread Summary
In the discussion on explicit non-holonomic equations of motion, participants explore the challenges of formulating these equations compared to holonomic cases. It is noted that while Lagrange multipliers are essential for addressing non-holonomic constraints, existing literature, including Landau and Lifshitz, may not provide comprehensive guidance. The focus is on finding a general form for the equations of motion, as non-holonomic constraints are local and cannot be resolved by merely selecting independent coordinates. Participants express a desire for a more explicit formulation beyond the standard Euler-Lagrange equations. The conversation emphasizes the complexity of integrating non-holonomic constraints into the motion equations.
andresB
Messages
625
Reaction score
374
In the holonomic case, we can put the Lagrangian in the Lagrange equations to obtain the explicit form of the equations of motion. From Greenwood's classical dynamics book, the equations are
1661995443042.png


Are there such general equations for the non-holonomic case?
 
Physics news on Phys.org
Have a look in Landau Lifshitz vol. 1, who gets the non-holonomic constraints right. You have to introduce Lagrange multipliers in the right way!
 
vanhees71 said:
Have a look in Landau Lifshitz vol. 1, who gets the non-holonomic constraints right. You have to introduce Lagrange multipliers in the right way!

Long time without reading Landau, and I have to say that its treatment of the non-holonomic constraint seems disappointingly scarce.

In any case, I'm not looking for the Euler-Lagrange+ lagrange multipliers equations, they are in every book. Instead I'm lookinf for the final general form of the equation of motion.
 
But these are the final general form of the equation of motion. Non-holonomic constraints are local constraints, and you cannot satisfy them by simply choosing a set of independent coordinates as for holonomic constraints.
 
vanhees71 said:
But these are the final general form of the equation of motion. Non-holonomic constraints are local constraints, and you cannot satisfy them by simply choosing a set of independent coordinates as for holonomic constraints.

But the Lagrange equations are just a step in the final solution of the problem. They have to be solved togheter with the non-holonomic constraint equations. I know how to do it in specific examples that can be found in the standard books, but I would be surprised if no general explicit formulat exist.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top