Lagrange equation: when exactly does it apply?

  • Thread starter Nikitin
  • Start date
  • #1
726
27

Main Question or Discussion Point

Hi! Does the Lagrange equation ONLY apply when the constraints are holonomic? What about the constraining forces acting on the system (i.e. normal force, or other perpendicular forces), do they make a system holonomic?

What about the Lagrange equation with the general force on the right hand side. I read in Goldstein that it can be, for instance, a non-conservative frictional force. Why? Where did that come from?
 

Answers and Replies

  • #2
726
27
BTW, I am talking about the Euler-Lagrange equation. This one, $$ \sum_j \frac{\partial L }{\partial q_j} - \frac{d}{d t} \frac{\partial L }{\partial \dot{q_j}} = 0$$ in case there was any confusion.

But what is up with the modified equation, ##\frac{\partial L }{\partial q_j} - \frac{d}{d t} \frac{\partial L }{\partial \dot{q_j}} = Q_j## ? When does this apply to a system, and for which generalized forces ##Q_j##s? It was not derived in Goldstein's book, just given.
 
  • #3
726
27
Another question, if somebody wants to answer: does ##\frac{\partial T}{\partial q_j}##, where ##T## is the kinetic energy of the system, always equal zero? Or do there exist situations where the kinetic energy has an explicit dependence on position?

It might seem like a strange question because kinetic energy is defined using total velocity, but I ask because one form of Lagrange's equation is ##\frac{d}{dt} \frac{\partial T}{\partial \dot{q_j}} - \frac{\partial T}{\partial q_j} = Q_j##.
 
  • #4
635
103
Another question, if somebody wants to answer: does ##\frac{\partial T}{\partial q_j}##, where ##T## is the kinetic energy of the system, always equal zero? Or do there exist situations where the kinetic energy has an explicit dependence on position?
It certainly can, in spherical coordinates (or polar) you have position dependence in the kinetic term.
 
  • #5
390
131
Check http://physics.clarku.edu/courses/201/sreading/AJP73_March2005_265-272.pdf [Broken] paper out. Does that help answer your questions?
 
Last edited by a moderator:
  • #6
48
6
I hate to answer your question this way, but if you reread Goldstein chapter 1 and 2 enough, you will answer your questions. This was true for me.
 

Related Threads on Lagrange equation: when exactly does it apply?

Replies
1
Views
9K
Replies
5
Views
2K
Replies
5
Views
2K
Replies
17
Views
7K
  • Last Post
Replies
7
Views
3K
  • Last Post
Replies
7
Views
4K
  • Last Post
Replies
1
Views
337
Replies
10
Views
7K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
0
Views
1K
Top