MHB Explore the Fibonacci Sum Mystery

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Curiosity
Click For Summary
The discussion explores the Fibonacci sequence and its infinite sum represented as S = ∑(F_n / 10^(n+1)), which intriguingly equals 1/89. The generating function for the Fibonacci sequence is introduced as g(x) = x / (1 - x - x^2), and substituting x = 1/10 yields another significant result of 10/89. The convergence of the series is noted for |x| < (−1 + √5)/2, approximately 0.618. Additionally, a related sum, ∑(F_n / 2^n), converges to 2, highlighting the fascinating properties of Fibonacci numbers. The mathematical implications of these findings are considered noteworthy.
soroban
Messages
191
Reaction score
0

Consider the Fibonacci Sequence: .$0,1,1,2,3,5,8,13,21,34,\,.\,.\,.$

Now consider: .$\displaystyle S \;=\;\sum^{\infty}_{n=0}\frac{F_n}{10^{n+1}} $We have:

. ..$\begin{array}{ccccccccccccccccc} 0.&0&1 \\ &&&1 \\ &&&&2 \\ &&&&&3 \\ &&&&&& 5 \\ &&&&&&& 8 \\ &&&&&&& 1&3 \\ &&&&&&&& 2&1 \\ &&&&&&&&& 3&4 \\ &&&&&&&&&& 5&5 \\ &&&&&&&&&&& 8&9 \\ &&&&&&&&&&& 1&4&4 \\ &&&&&&&&&&&&2&3&3 \\ \hline 0. & 0 & 1 & 1 & 2 & 3 & 5 & 9 & 5 & 5 & 0 & 4 & 6 & 1 & . & . & .\end{array}$The sum happens to be $\dfrac{1}{89}$ . . . How strange is that?
 
Mathematics news on Phys.org
soroban said:
Consider the Fibonacci Sequence: .$0,1,1,2,3,5,8,13,21,34,\,.\,.\,.$

Now consider: .$\displaystyle S \;=\;\sum^{\infty}_{n=0}\frac{F_n}{10^{n+1}} $We have:

. ..$\begin{array}{ccccccccccccccccc} 0.&0&1 \\ &&&1 \\ &&&&2 \\ &&&&&3 \\ &&&&&& 5 \\ &&&&&&& 8 \\ &&&&&&& 1&3 \\ &&&&&&&& 2&1 \\ &&&&&&&&& 3&4 \\ &&&&&&&&&& 5&5 \\ &&&&&&&&&&& 8&9 \\ &&&&&&&&&&& 1&4&4 \\ &&&&&&&&&&&&2&3&3 \\ \hline 0. & 0 & 1 & 1 & 2 & 3 & 5 & 9 & 5 & 5 & 0 & 4 & 6 & 1 & . & . & .\end{array}$The sum happens to be $\dfrac{1}{89}$ . . . How strange is that?

In...

Generating Function -- from Wolfram MathWorld

... the generating function of the Fibonacci's sequence $f_{n}$ is said to be...

$\displaystyle g(x)= \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{x}{1-x-x^{2}}$ (1)

Setting $x=\frac{1}{10}$ in (1) You obtain...

$\displaystyle \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{10}{89}$ (2)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
In...

Generating Function -- from Wolfram MathWorld

... the generating function of the Fibonacci's sequence $f_{n}$ is said to be...

$\displaystyle g(x)= \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{x}{1-x-x^{2}}$ (1)

Setting $x=\frac{1}{10}$ in (1) You obtain...

$\displaystyle \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{10}{89}$ (2)

The series...

$\displaystyle \sum_{n=0}^{\infty} f_{n}\ x^{n}$ (1)

... converges for $\displaystyle |x|< \frac{-1 + \sqrt{5}}{2} = .6180339887...$, so that, in my opinion, much more 'suggestive' is the result... $\displaystyle \sum_{n=0}^{\infty} \frac{f_{n}}{2^{n}}= 2$ (2)

http://www.sv-luka.org/ikone/ikone180a.jpg

Marry Christmas from Serbia

Kind regards

$\chi$ $\sigma$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K