MHB Explore the Fibonacci Sum Mystery

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Curiosity
AI Thread Summary
The discussion explores the Fibonacci sequence and its infinite sum represented as S = ∑(F_n / 10^(n+1)), which intriguingly equals 1/89. The generating function for the Fibonacci sequence is introduced as g(x) = x / (1 - x - x^2), and substituting x = 1/10 yields another significant result of 10/89. The convergence of the series is noted for |x| < (−1 + √5)/2, approximately 0.618. Additionally, a related sum, ∑(F_n / 2^n), converges to 2, highlighting the fascinating properties of Fibonacci numbers. The mathematical implications of these findings are considered noteworthy.
soroban
Messages
191
Reaction score
0

Consider the Fibonacci Sequence: .$0,1,1,2,3,5,8,13,21,34,\,.\,.\,.$

Now consider: .$\displaystyle S \;=\;\sum^{\infty}_{n=0}\frac{F_n}{10^{n+1}} $We have:

. ..$\begin{array}{ccccccccccccccccc} 0.&0&1 \\ &&&1 \\ &&&&2 \\ &&&&&3 \\ &&&&&& 5 \\ &&&&&&& 8 \\ &&&&&&& 1&3 \\ &&&&&&&& 2&1 \\ &&&&&&&&& 3&4 \\ &&&&&&&&&& 5&5 \\ &&&&&&&&&&& 8&9 \\ &&&&&&&&&&& 1&4&4 \\ &&&&&&&&&&&&2&3&3 \\ \hline 0. & 0 & 1 & 1 & 2 & 3 & 5 & 9 & 5 & 5 & 0 & 4 & 6 & 1 & . & . & .\end{array}$The sum happens to be $\dfrac{1}{89}$ . . . How strange is that?
 
Mathematics news on Phys.org
soroban said:
Consider the Fibonacci Sequence: .$0,1,1,2,3,5,8,13,21,34,\,.\,.\,.$

Now consider: .$\displaystyle S \;=\;\sum^{\infty}_{n=0}\frac{F_n}{10^{n+1}} $We have:

. ..$\begin{array}{ccccccccccccccccc} 0.&0&1 \\ &&&1 \\ &&&&2 \\ &&&&&3 \\ &&&&&& 5 \\ &&&&&&& 8 \\ &&&&&&& 1&3 \\ &&&&&&&& 2&1 \\ &&&&&&&&& 3&4 \\ &&&&&&&&&& 5&5 \\ &&&&&&&&&&& 8&9 \\ &&&&&&&&&&& 1&4&4 \\ &&&&&&&&&&&&2&3&3 \\ \hline 0. & 0 & 1 & 1 & 2 & 3 & 5 & 9 & 5 & 5 & 0 & 4 & 6 & 1 & . & . & .\end{array}$The sum happens to be $\dfrac{1}{89}$ . . . How strange is that?

In...

Generating Function -- from Wolfram MathWorld

... the generating function of the Fibonacci's sequence $f_{n}$ is said to be...

$\displaystyle g(x)= \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{x}{1-x-x^{2}}$ (1)

Setting $x=\frac{1}{10}$ in (1) You obtain...

$\displaystyle \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{10}{89}$ (2)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
In...

Generating Function -- from Wolfram MathWorld

... the generating function of the Fibonacci's sequence $f_{n}$ is said to be...

$\displaystyle g(x)= \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{x}{1-x-x^{2}}$ (1)

Setting $x=\frac{1}{10}$ in (1) You obtain...

$\displaystyle \sum_{n=0}^{\infty} f_{n}\ x^{n} = \frac{10}{89}$ (2)

The series...

$\displaystyle \sum_{n=0}^{\infty} f_{n}\ x^{n}$ (1)

... converges for $\displaystyle |x|< \frac{-1 + \sqrt{5}}{2} = .6180339887...$, so that, in my opinion, much more 'suggestive' is the result... $\displaystyle \sum_{n=0}^{\infty} \frac{f_{n}}{2^{n}}= 2$ (2)

http://www.sv-luka.org/ikone/ikone180a.jpg

Marry Christmas from Serbia

Kind regards

$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
2
Views
1K
Replies
4
Views
3K
Replies
2
Views
2K
Replies
8
Views
1K
Replies
5
Views
1K
Replies
24
Views
3K
Replies
2
Views
1K
Back
Top