What Are the Key Differences Between Complete and Sequentially Compact Spaces?

  • Thread starter Thread starter Hymne
  • Start date Start date
  • Tags Tags
    Compact Space
AI Thread Summary
Complete metric spaces ensure that every Cauchy sequence converges within the space, while sequentially compact spaces guarantee that every sequence has a convergent subsequence. The discussion highlights that a finite sequence, such as (1,2,3,4,5,6), does not apply to the concept of convergence in the same way as infinite sequences do. It clarifies that in a complete metric space, convergence and Cauchy sequences are equivalent, whereas in a compact metric space, every sequence contains a Cauchy subsequence. The Heine-Borel theorem is referenced to illustrate that the interval (0,1) is complete but not compact, emphasizing the distinct properties of these spaces.
Hymne
Messages
87
Reaction score
1
Hello Physicsforums!
I have a problem with the difference between complete metric space and a sequentially compact metric space.
For the first one every Cauchy sequence converges inside the space, which is no problem.
But for the last one "every sequence has a convergent subsequence." (-Wiki) And it's here that I get lost.

How does this affect the constraints on the space?
Could someone please try to give me an intuitive explanation?

For [1,9] on the real axis we can take the sequence (1,2,3,4,5,6) as an example. How do we find a convergent subsequence in this one?
Have I missunderstood it all?
 
Mathematics news on Phys.org
Hymne said:
For [1,9] on the real axis we can take the sequence (1,2,3,4,5,6) as an example. How do we find a convergent subsequence in this one?
Have I missunderstood it all?

What is the definition of "sequence"?
 
George Jones said:
What is the definition of "sequence"?

Hmm, I use this one http://en.wikipedia.org/wiki/Sequence .
With
In mathematics, a sequence is an ordered list of objects (or events). Like a set, it contains members (also called elements or terms), and the number of terms (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and the exact same elements can appear multiple times at different positions in the sequence.
Maybe it´s here that I am confused. :rolleyes:

Should we only work with Cauchy sequences maybe?
 
These definitions apply to infinite sequences. (1,2,3,4,5,6) is not an infinite sequence. It doesn't even mean anything for a finite sequence to converge!
 
To the original question..

In a complete metric space (an) converges <-> (an) is cauchy

In a compact metric space, every sequence an contains a convergent subsequence (ank).

We should note that convergence -> cauchy in any metric space.

Then, in a compact metric space, every sequence an contains a cauchy subsequence (ank).

Regardless, the properties of these two types of spaces are completely different.

A simple example highlighting the difference between the two is a subset of R1. Consider, the interval (0,1).

By the Heine-Borel theorem, this space is not compact since it is not closed.

It is, however, a complete metric space since cauchy <-> convergent in R1.

Was this your question?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top