Edit: LOL. micromass always finds a way to say something similar to what I'm going to say while I'm typing.

(Although, it's been a while since the last time that happened).
There are at least two other approaches to QM (other than starting with the Hilbert space axioms) that are a bit more intuitive. Unfortunately, they require some very heavy math. I don't have a perfect understanding of either of these approaches, so it's possible that some of these details are a bit off, but I'll try:
One approach argues that if a theory can predict the average value of a sequence of measurements on identically prepared systems, done by identical measuring devices, then we should be able to define equivalence classes of measuring devices, and some mathematical operations on the set of equivalence classes that give it the structure of a C*-algebra. The rest is just an application of the theory of representations of C*-algebras. In particular, there's a theorem that ensures that there's a homomorphism from the C*-algebra (whose members are called "observables" btw) into the set of bounded operators on a Hilbert space. This approach is called algebraic quantum mechanics.
Apparently if the C*-algebra is commutative, there's some other theorem that ensures that what we get is a classical theory.
Another approach argues that there should be a
lattice (a partially ordered set that satisfies some additional conditions) associated with each theory, and that this lattice will need to satisfy some technical conditions in order to not be extremely hard to work with. Apparently these technical conditions are sufficient to ensure that the lattice is isomorphic to the lattice of Hilbert subspaces of a Hilbert space. This approach is called quantum logic.
Apparently, if the lattice satisfies some additional conditions that makes it even easier to work with, it will be isomorphic to the (partially ordered) set of subsets of some set X. This set can then be interpreted as the phase space of a classical theory.
Some not so easy references:
Strocchi: Introduction to the mathematical structure of quantum mechanics: a short course for mathematicians.
Araki: Mathematical theory of quantum fields.
Varadarajan: Geometry of quantum theory.
For the algebraic approach, you need to know lots of topology and functional analysis. The book by Varadarjan is so hard to read that it's even hard to tell what sort of things you need to know for the quantum logic approach. The book contains long sections on projective geometry, and measure theory on locally compact simply connected topological groups.