Gib Z said:
Could you perhaps explain it more rigorously? Because otherwise \int^b_a f(x) dx would equal 0..for any bounds..or function...
Well, let y = uv, where u, and v are functions of x, and everywhere differentiable.
So: \delta y = (u + \delta u) (v + \delta v) - uv = u \delta v + v \delta u + \delta u \delta v
Divide both sides by \delta x, we obtain:
\frac{\delta y}{\delta x} = u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x} + \frac{\delta u \delta v}{\delta x} = u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x} + \frac{\delta u}{\delta x} \delta v
Now, take the limit as \delta x \rightarrow 0, we have:
y'(x) = \lim_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} = \lim_{\delta x \rightarrow 0} \left( u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x} + \frac{\delta u}{\delta x} \delta v \right), since, u and v are differentiable, \lim_{\delta x \rightarrow 0} \frac{\delta u}{\delta x} = u'(x), \lim_{\delta x \rightarrow 0} \frac{\delta v}{\delta x} = v'(x), both are finite. So we have:
y'(x) = \lim_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} = \lim_{\delta x \rightarrow 0} \left( u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x} + \frac{\delta u}{\delta x} \delta v \right) = u(x)v'(x) + u'(x)v(x) + u'(x) \lim_{\delta x \rightarrow 0} \delta v
Since v is continuous, so, as \delta x \rightarrow 0, we also have: \delta v \rightarrow 0, so:
y'(x) = \lim_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} = ... = u(x)v'(x) + u'(x)v(x) + u'(x) 0 = u(x)v'(x) + u'(x)v(x)
Well, that's how I understand it.
I did mistype in the previous post, all dx, dy, du, or dv should be \delta x, \delta y, \delta u, and \delta v. Sorry for the confusion.

:)