Expressing a matrice as a sum of two non singular matrices

  • Thread starter Thread starter vish_maths
  • Start date Start date
  • Tags Tags
    Matrices Sum
vish_maths
Messages
60
Reaction score
1
Hello everyone , So here is this problem which i was recently thinking about
Expressing any matrix as the sum of two non singular matrices
So, when i think of ways to express a matrix as sum of two matrices, the thought which
comes first is :

(a) Any matrix can be expressed as the sum of a symmetric and an asymmetric matrix
but an asymmetric matrix is always singular which means this option is ruled out

(b) Suppose A and B are two non Singular matrices. There ought to be some technique
of factorising A and B so that some common terms exist and when i combine these two, a term is obtained whose property defines whether the resulting matrix is singular or not

What can be such a factorisation ?
 
Last edited:
Physics news on Phys.org
Perhaps express it as a sum of an upper-triangular and a lower-triangular matrix??

When is a triangular matrix non-singular??
 
but an asymmetric matrix is always singular which means this option is ruled out

Where did you get that idea? First, "asymmetric" simply means "not symmetric"- you mean "anti-symmetric". And even for anti-symmetric matrices, this is not true:
\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}
is anti-symmetric but has determinant 1 and so is not singular.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top