Expressing an integral as an infinite series

DrummingAtom
Messages
657
Reaction score
2

Homework Statement


\int_0^x \frac{1-cos(t)}{t}

Homework Equations


The Attempt at a Solution



I'm lost completely. If I separate it and then try integrating it has 0 for the ln(x) which has to be wrong.
 
Physics news on Phys.org
One equation that will be useful to you is that

cosx = \Sigma_{n=0} ^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}

So you can cancel out the '1' from the numerator.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top